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Soliton Collision in Biomembranes
and Nerves- A Stability Study

Revathi Appali, Benny Lautrup, Thomas Heimburg, and Ursula van Rienen

Abstract Collision of moving solitons is an interesting phenomena which is closely
related to the stability of solitons. We study the head-on collision of solitons in a
recently introduced model for biomembranes and nerves. We conduct simulations
for pairs of solitons moving in opposite directions with the same velocity. It is found
that these stable solitons collide elastically and it results a small amplitude noise
traveling with higher velocity. We have also examined the energy loss of the solitons
after collision.

1 Introduction

The functional success of electrically stimulated brain implants eg. Deep Brain
Stimulation (DBS) depends on the basic understanding of signal propagation in the
nerve cells. Mathematical models of pulse propagation in these cells play a major
role in further investigation of the interaction of these nerve cells with the electrodes.
One such mathematical description of the nerve pulse propagation is “soliton
model”. Soliton model is based on the propagation of a localized density wave in the
axon membrane [1, 3]. The important requirement of the model is the empirically
known lipid phase transitions slightly below the physiological temperatures. Soliton
models predict the exact pulse propagation velocities in myelinated nerves. The
propagation velocities are closely related to the lateral sound velocities in the nerve
membrane [1]. During compression, the appearance of a voltage pulse seems to be
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a consequence of the piezo-electric nature of partially charged and asymmetric cell
membrane [2]. Moreover, the soliton model explains the reversible temperature and
heat exchanges observed in connection with the nerve pulse. Another advantage of a
soliton-based description of pulse propagation in nerves is its predictive power [1].

Lautrup et al. demonstrated that the soliton1 solutions are stable with respect
to small amplitude fluctuations and robust in the presence of dissipation. This
shows that the solitons can propagate under realistic physiological conditions over
the length scales of nerves (upto several meters eg., sciatic nerve in human) even
in the presence of friction and lateral heterogeneities [3]. In this paper, we examined
the stability of the solitons with the help of collision studies, which was not consid-
ered in reference [3]. In the following section, we will discuss the model from [3].

2 Soliton Model

The nerve pulse propagation in a myelinated nerve can be described by (3)

@2

@�2
��A D @

@z

��
c2

0 C p��A C q
�
��A

�2 C :::
� @

@z
��A � h

@4

@z4
��A

�
(1)

Here,

• ��A is the change in lateral density of the membrane ��A D �A � �A
0 .

• �A is the lateral density of the membrane.
• �A

0 is the equilibrium lateral density.
• c0 is the velocity of small amplitude sound.
• p and q are the parameters determined from sound velocity and density depen-

dence.
• h is the parameter to set the linear scale of the propagating pulse.

The empirical equilibrium value of �A
0 is 4:035 10�3 g/m2 and the low frequency

sound velocity c0 is 176:6 m/s. The coefficients p and q were fitted to measured
values of the sound velocity as a function of density.

We work with the dimensionless variables u, x and t defined in [3] as
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Equation (1) takes the following form with these variables

1We use the term “soliton” synonymous to “solitary wave”. Since the localized solutions pass
through each other and dissipate some energy, which is not the case for genuine solitons.
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with
B.u/ D 1 C B1u C B2u2 (4)

Here the parameter values are chosen as B1 D �16:6 , B2 D 79:5 from [3]. We
consider u as a function of � D x � ˇt as in [2].
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Equation (4) is known to have exponentially localized solitonic solutions which
propagate without distortion for a finite range of sub-sonic velocities [3].

2.1 Analytical Solution

Localized solitonic solutions of (5) are given by (as in [3])

u.�/ D 2aCa�
.aC C a�/ C .aC � a�/cosh.�

p
1 � ˇ2/

(6)

where u D a˙ are the real roots of the right hand side of the integrated equation, for
the velocity range ˇ0 <j ˇ j< 1 (Fig. 1).

Fig. 1 Soliton profiles for velocities for ˇ D 0:95, 0.85, 0.734671, 0.65 and ˇ0 C 4 � 10�9

respectively from bottom to up. Adapted from [3]
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• The amplitude of the soliton decreases with the velocity ˇ.
• The width of the soliton diverges for ˇ ! ˇ0 and ˇ ! 1.
• The soliton has a minimum width at ˇ D 0:734671, shown in dashed line.

2.2 Numerical Analysis

To investigate the questions concerning the stability of the solitons of (6), B. Lautrup
et.al have considered the model numerically in [3]. In this contribution, the stability
of the solitonic solutions for infinitesimal perturbations was carried out along with
the effect of dissipation on the soliton propagation. The model, as a system of two
first order partial differential equations as mentioned in the reference [3] is used for
our numerical consideration (see (8)).
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To realize the soliton propagation, the model in the above form was solved
numerically with Finite Element Method (FEM) in COMSOL Multiphysics 3.5a R�.
The general form in the classical partial differential equation (PDE) mode of
COMSOL Multiphysics R� was employed with periodic boundary conditions. The
analytical solution of ˇ D 0:734671, “minimum width” was chosen as initial
condition. Dispersion was found in the solution. The energy of the soliton was found
to decrease during the propagation. The algorithm in COMSOL does not yield full
numerical stability (Fig. 2).

The stable numerical solution of (7) can be obtained by using a variant of the
two-step Lax-Wendroff method as described in [3]. This was executed in C++ [4]
and Mathematica R� by the authors of [3] and the same is executed here for collision
studies.

3 Collision Studies

We have investigated the head-on collision of two pulses with identical amplitudes
and opposite velocities. It is known that pulses are blocked upon collision [5]. The
FitzHugh-Nagumo model [6, 7], which is a simplified form of the Hodgkin-Huxley
model [8], allows for both the cancellation and penetration of pulses depending
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Fig. 2 Propagation of
minimal width soliton. PDE
solved with time stepping
4t D 0:001 and 4x D 0:1.
The shape of the pulse is not
conserved by the numerical
algorithm in FEM based
Comsol Multiphysics 3.5a R

�.
Length of the periodic lattice
has been increased here to
depict the change of soliton
shape during the propagation

Fig. 3 Collision of two
solitons before (a) and after
collision (b) shown for
ˇ D 0:8. Small amplitude
noise travelling ahead of the
post-collision pulses for
ˇ D 0:8 that carries a very
small fraction of the overall
energy is obtained. The same
was achieved for solitons of
different velocity and
amplitude

on parameters [9]. Since the soliton model is based on adiabatic and reversible
physics without dissipation [10], here we have investigated collisions in the absence
of friction. Figure 3 shows two identical solitons with ˇ D 0:8 before and after
collision. Small amplitude noise travelled ahead of the post-collision pulses with a
very small energy in the order of � 1% compared to that of the solitons . The same
was found for solitary pulses with different velocities and amplitudes.
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The functional dependency of the sound velocity on density was given by (4).
It represents a quadratic approximation to the experimental data and yields a
satisfactory description in the density regime between solid and liquid membrane
state [9]. However, when large amplitude pulses collide, (4) allows the density
transiently to exceed the density of the solid phase (u � 0:25). Considering this
as unphysical, a “soft barrier” at the density of the solid phase is introduced in (4):

B.u/ D .1 C B1.u/ C B2.u
2//.1 C e100.x�0:26// (10)

This modification of (4) is only relevant at the moment for the collision of two large
amplitude solitons. The result of such a collision of two solitons with ˇ close to
the minimum velocity ˇ0, given by (7), is shown in Fig.4. The soliton fell apart
to a sequence of solitons and some additional low amplitude noise. This effect
pronounces with the velocity closer to minimum velocity. Such decomposition into
several pulses was not seen in the absence of the soft barrier. We compared the
largest pulse energy after the collision to the energy before collision (Fig. 5).

The energy density of a soliton has both potential and kinetic energy contribu-
tions and can be calculated by using a Lagrangian formalism. (Adapted from [10])
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Fig. 4 Collision of two
solitons before (a) and after
collision (b) for
ˇ D 0:649850822 (close to
maximum amplitude) and the
additional condition of a
maximum density change of
u D 0:25. The pulse falls
apart into several solitary
pulses with different
amplitude and velocity, and
some small amplitude noise
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Fig. 5 Energy loss of soliton after collision in %. The energy content of the largest pulse after
collision with the pulse before the collision are compared. Only when the pulses reach their
maximum amplitude and minimum velocity, dissipation becomes significant

Even for the near-limiting case the fraction of energy lost into smaller amplitude
solitons and small amplitude noise is <4% for the most extreme case studied. Thus,
we observed most of the energy of the major soliton was conserved in collisions
even after a maximum density was enforced.

4 Conclusion

The soliton model of nerve pulse propagation with the modified Good-Boussinesq
equation [11] is explained. The analytic form of the solitons is given in Sect. 2.1.
We moved on to numerical analysis of the model Sect. 2.2 to realize the solitary
propagation (with periodic boundary conditions) using FEM based software Comsol
Multiphysics R�. Unexpectedly, the numerical solution of the PDE was discrepant
from the analytical solution given in [3]. The pulse amplitude was found to be
decreasing during the propagation. This can be attributed to an inherent problem of
numerical dispersion in the software of Comsol Multiphysics R�. Simulations were
then carried out in C++ and Mathematica R� to self-implement the numerical method
and to obtain energy-loss less soliton propagation. Finally, the stability of the model
is then tested with the aid of collision studies. In the context of our model, pulses
pass through each other “almost undisturbed” with the generation of only small
amounts of small amplitude noise. If a maximum density is introduced, as seems
reasonable for the crystalline lipid matrix, large amplitude solitons can decay into a
series of solitons. However, even under these extreme conditions, the bulk of the



212 R. Appali et al.

energy remains in the maximum amplitude soliton. Our model does not offer a
description of the cancellation of pulses as suggested in other models but opens up a
new possibility of passing through almost undisturbed and conserving the maximum
energy even upon maximum density enforcement.
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