169 research outputs found
High quality ultrafast transmission electron microscopy using resonant microwave cavities
Ultrashort, low-emittance electron pulses can be created at a high repetition
rate by using a TM deflection cavity to sweep a continuous beam across
an aperture. These pulses can be used for time-resolved electron microscopy
with atomic spatial and temporal resolution at relatively large average
currents. In order to demonstrate this, a cavity has been inserted in a
transmission electron microscope, and picosecond pulses have been created. No
significant increase of either emittance or energy spread has been measured for
these pulses.
At a peak current of pA, the root-mean-square transverse normalized
emittance of the electron pulses is m rad in the direction parallel to the streak of the cavity, and
m rad in the perpendicular
direction for pulses with a pulse length of 1.1-1.3 ps. Under the same
conditions, the emittance of the continuous beam is
m rad.
Furthermore, for both the pulsed and the continuous beam a full width at half
maximum energy spread of eV has been measured
Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro
In vitro cultures of endothelial cells are a widely used model system of the
collective behavior of endothelial cells during vasculogenesis and
angiogenesis. When seeded in an extracellular matrix, endothelial cells can
form blood vessel-like structures, including vascular networks and sprouts.
Endothelial morphogenesis depends on a large number of chemical and mechanical
factors, including the compliancy of the extracellular matrix, the available
growth factors, the adhesion of cells to the extracellular matrix, cell-cell
signaling, etc. Although various computational models have been proposed to
explain the role of each of these biochemical and biomechanical effects, the
understanding of the mechanisms underlying in vitro angiogenesis is still
incomplete. Most explanations focus on predicting the whole vascular network or
sprout from the underlying cell behavior, and do not check if the same model
also correctly captures the intermediate scale: the pairwise cell-cell
interactions or single cell responses to ECM mechanics. Here we show, using a
hybrid cellular Potts and finite element computational model, that a single set
of biologically plausible rules describing (a) the contractile forces that
endothelial cells exert on the ECM, (b) the resulting strains in the
extracellular matrix, and (c) the cellular response to the strains, suffices
for reproducing the behavior of individual endothelial cells and the
interactions of endothelial cell pairs in compliant matrices. With the same set
of rules, the model also reproduces network formation from scattered cells, and
sprouting from endothelial spheroids. Combining the present mechanical model
with aspects of previously proposed mechanical and chemical models may lead to
a more complete understanding of in vitro angiogenesis.Comment: 25 pages, 6 figures, accepted for publication in PLoS Computational
Biolog
Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM mode for ultrafast electron microscopy
We present a theoretical description of resonant radiofrequency (RF)
deflecting cavities in TM mode as dynamic optical elements for
ultrafast electron microscopy. We first derive the optical transfer matrix of
an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D
phase space propagation of a Gaussian electron distribution through the cavity.
We derive closed, analytic expressions for the increase in transverse emittance
and energy spread of the electron distribution. We demonstrate that for the
special case of a beam focused in the center of the cavity, the low emittance
and low energy spread of a high quality beam can be maintained, which allows
high-repetition rate, ultrafast electron microscopy with 100 fs temporal
resolution combined with the atomic resolution of a high-end TEM. This is
confirmed by charged particle tracking simulations using a realistic cavity
geometry, including fringe fields at the cavity entrance and exit apertures
Dual mode microwave deflection cavities for ultrafast electron microscopy
This paper presents the experimental realization of an ultrafast electron
microscope operating at a repetition rate of 75 MHz based on a single compact
resonant microwave cavity operating in dual mode. This elliptical cavity
supports two orthogonal TM modes with different resonance frequencies
that are driven independently. The microwave signals used to drive the two
cavity modes are generated from higher harmonics of the same Ti:Sapphire laser
oscillator. Therefore the modes are accurately phase-locked, resulting in
periodic transverse deflection of electrons described by a Lissajous pattern.
By sending the periodically deflected beam through an aperture, ultrashort
electron pulses are created at a repetition rate of 75 MHz. Electron pulses
with fs pulse duration are created with only W
of microwave input power; with normalized rms emittances of
pm rad and pm rad for
a peak current of nA. This corresponds to an rms normalized
peak brightness of A/m sr V, equal
to previous measurements for the continuous beam. In addition, the FWHM energy
spread of eV is also unaffected by the dual mode
cavity. This allows for ultrafast pump-probe experiments at the same spatial
resolution of the original TEM in which a 75 MHz Ti:Sapphire oscillator can be
used for exciting the sample. Moreover, the dual mode cavity can be used as a
streak camera or time-of-flight EELS detector with a dynamic range
Direct magneto-optical compression of an effusive atomic beam for high-resolution focused ion beam application
An atomic rubidium beam formed in a 70 mm long two-dimensional
magneto-optical trap (2D MOT), directly loaded from a collimated Knudsen
source, is analyzed using laser-induced fluorescence. The longitudinal velocity
distribution, the transverse temperature and the flux of the atomic beam are
reported. The equivalent transverse reduced brightness of an ion beam with
similar properties as the atomic beam is calculated because the beam is
developed to be photoionized and applied in a focused ion beam. In a single
two-dimensional magneto-optical trapping step an equivalent transverse reduced
brightness of A/(m sr eV) was
achieved with a beam flux equivalent to nA. The
temperature of the beam is further reduced with an optical molasses after the
2D MOT. This increased the equivalent brightness to A/(m sr eV). For currents below 10 pA, for which disorder-induced
heating can be suppressed, this number is also a good estimate of the ion beam
brightness that can be expected. Such an ion beam brightness would be a six
times improvement over the liquid metal ion source and could improve the
resolution in focused ion beam nanofabrication.Comment: 10 pages, 8 figures, 1 tabl
Design and characterization of dielectric filled TM microwave cavities for ultrafast electron microscopy
Microwave cavities oscillating in the TM mode can be used as dynamic
electron-optical elements inside an electron microscope. By filling the cavity
with a dielectric material it becomes more compact and power efficient,
facilitating the implementation in an electron microscope. However, the
incorporation of the dielectric material makes the manufacturing process more
difficult. Presented here are the steps taken to characterize the dielectric
material, and to reproducibly fabricate dielectric filled cavities. Also
presented are two versions with improved capabilities. The first, called a
dual-mode cavity, is designed to support two modes simultaneously. The second
has been optimized for low power consumption. With this optimized cavity a
magnetic field strength of 2.84 0.07 mT was generated at an input power
of 14.2 0.2 W. Due to the low input powers and small dimensions, these
dielectric cavities are ideal as electron-optical elements for electron
microscopy setups
Effective and Efficient Stand Magnifier Use in Visually Impaired Children
Contains fulltext :
167758.pdf (publisher's version ) (Open Access)PURPOSE: The main objective of this study was to analyze the effectiveness and efficiency of magnifier use in children with visual impairment who did not use a low vision aid earlier, in an ecologically valid goal-directed perceptuomotor task. METHODS: Participants were twenty-nine 4- to 8-year-old children with visual impairment and 47 age-matched children with normal vision. After seeing a first symbol (an Lea Hyvarinen [LH] symbol), children were instructed to (1) move the stand magnifier as quickly as possible toward a small target symbol (another LH symbol that could only be seen by using the magnifier), (2) compare the two symbols, and (3) move the magnifier to one of two response areas to indicate whether the two symbols were identical. Performance was measured in terms of accuracy, response time, identification time, and movement time. Viewing distance, as well as hand and eye dominance while using the magnifier was assessed. RESULTS: There were no significant differences between the two groups in accuracy, reaction time, and movement time. Contrary to the prediction, children with visual impairment required less time to identify small symbols than children with normal vision. Both within-subject and between-subject variability in viewing distance were smaller in the visually impaired group than in the normally sighted group. In the visually impaired group, a larger viewing distance was associated with shorter identification time, which in turn was associated with higher accuracy. In the normally sighted group, a faster movement with the magnifier and a faster identification were associated with increasing age. CONCLUSION: The findings indicate that children with visual impairment can use the stand magnifier adequately and efficiently. The normally sighted children show an age-related development in movement time and identification time and show more variability in viewing distance, which is not found in visually impaired children. Visually impaired children seem to choose a standard but less adaptive strategy in which they primarily used their preferred hand to manipulate the magnifier and their preferred eye to identify the symbol. TRIAL REGISTRATION: Registered at http://www.trialregister.nl; NTR2380.11 p
Strain-controlled criticality governs the nonlinear mechanics of fibre networks
Disordered fibrous networks are ubiquitous in nature as major structural
components of living cells and tissues. The mechanical stability of networks
generally depends on the degree of connectivity: only when the average number
of connections between nodes exceeds the isostatic threshold are networks
stable (Maxwell, J. C., Philosophical Magazine 27, 294 (1864)). Upon increasing
the connectivity through this point, such networks undergo a mechanical phase
transition from a floppy to a rigid phase. However, even sub-isostatic networks
become rigid when subjected to sufficiently large deformations. To study this
strain-controlled transition, we perform a combination of computational
modeling of fibre networks and experiments on networks of type I collagen
fibers, which are crucial for the integrity of biological tissues. We show
theoretically that the development of rigidity is characterized by a
strain-controlled continuous phase transition with signatures of criticality.
Our experiments demonstrate mechanical properties consistent with our model,
including the predicted critical exponents. We show that the nonlinear
mechanics of collagen networks can be quantitatively captured by the
predictions of scaling theory for the strain-controlled critical behavior over
a wide range of network concentrations and strains up to failure of the
material
Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence
The cross section for coherent pair production by linearly polarised photons
in the 20-170 GeV energy range was measured for photon aligned incidence on
ultra-high quality diamond and germanium crystals. The theoretical description
of coherent bremsstrahlung and coherent pair production phenomena is an area of
active theoretical debate and development. However, under our experimental
conditions, the theory predicted the combined cross section and polarisation
experimental observables very well indeed. In macroscopic terms, our experiment
measured a birefringence effect in pair production in a crystal. This study of
this effect also constituted a measurement of the energy dependent linear
polarisation of photons produced by coherent bremsstrahlung in aligned
crystals. New technologies for manipulating high energy photon beams can be
realised based on an improved understanding of QED phenomena at these energies.
In particular, this experiment demonstrates an efficient new polarimetry
technique. The pair production measurements were done using two independent
methods simultaneously. The more complex method using a magnet spectrometer
showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for
publicatio
Linear to Circular Polarisation Conversion using Birefringent Properties of Aligned Crystals for Multi-GeV Photons
We present the first experimental results on the use of a thick aligned Si
crystal acting as a quarter wave plate to induce a degree of circular
polarisation in a high energy linearly polarised photon beam. The linearly
polarised photon beam is produced from coherent bremsstrahlung radiation by 178
GeV unpolarised electrons incident on an aligned Si crystal, acting as a
radiator. The linear polarisation of the photon beam is characterised by
measuring the asymmetry in electron-positron pair production in a Ge crystal,
for different crystal orientations. The Ge crystal therefore acts as an
analyser. The birefringence phenomenon, which converts the linear polarisation
to circular polarisation, is observed by letting the linearly polarised photons
beam pass through a thick Si quarter wave plate crystal, and then measuring the
asymmetry in electron-positron pair production again for a selection of
relative angles between the crystallographic planes of the radiator, analyser
and quarter wave plate. The systematics of the difference between the measured
asymmetries with and without the quarter wave plate are predicted by theory to
reveal an evolution in the Stokes parameters from which the appearance of a
circularly polarised component in the photon beam can be demonstrated. The
measured magnitude of the circularly polarised component was consistent with
the theoretical predictions, and therefore is in indication of the existence of
the birefringence effect.Comment: 12 pages, 12 figures, 1 table, REVTeX4 two column, Version for
publicatio
- …