21 research outputs found

    Retinal haemangioblastomas in von Hippel–Lindau germline mutation carriers: progression, complications and treatment outcome

    Get PDF
    Purpose: Evaluation of phenotype and treatment outcome of retinal haemangioblastomas (RH) in von Hippel–Lindau (VHL) disease and correlation of these features with the genotype of VHL germline mutation carriers. Methods: Retrospective analysis of a longitudinal cohort of 21 VHL germline mutation carriers and RH. Clinical and genetic data were obtained to analyse the correlation of genotype with phenotype and treatment outcomes. Results: All patients were categorized in two genotypic categories: missense mutations (MM) and truncating mutations (TM). Mean follow-up duration was 16.3 years and did not differ significantly between mutation groups (p = 0.383). Missense mutations (MM) carriers (n = 6) developed more progression-related complications compared to TM carriers (n = 15) (p = 0.046). Vitreoretinal surgery was more often applied in MM carriers (p = 0.036). Moderate (visual acuity (VA)20/80 to 20/200) to severe (VA < 20/200) visual impairment was observed in 53.3% of the eyes of MM carriers and 28.1% of the eyes of TM carriers at last recorded visit. Conclusion: Missense mutations in VHL patients seem to have a higher prevalence of progression-related comp

    A technical protocol for an experimental ex vivo model using arterially perfused porcine eyes

    No full text
    Ex vivo ocular perfused models have been described in the past and were applied in different mammalian species as platforms to test drug delivery systems and surgical techniques. However, reproduction of those methods is challenging because extensive and precise description of the protocols used is lacking. In this technical paper we provide a detailed description of all the steps to be followed from the enucleation of porcine eyes to cannulation of the ophthalmic artery and perfusion. This model can contribute to the reduction of use of living animals in ophthalmology research, whereas as opposed to in vitro models, it preserves tissue complexity and integrity

    A technical protocol for an experimental ex vivo model using arterially perfused porcine eyes

    Get PDF
    Ex vivo ocular perfused models have been described in the past and were applied in different mammalian species as platforms to test drug delivery systems and surgical techniques. However, reproduction of those methods is challenging because extensive and precise description of the protocols used is lacking. In this technical paper we provide a detailed description of all the steps to be followed from the enucleation of porcine eyes to cannulation of the ophthalmic artery and perfusion. This model can contribute to the reduction of use of living animals in ophthalmology research, whereas as opposed to in vitro models, it preserves tissue complexity and integrity

    A technical protocol for an experimental ex vivo model using arterially perfused porcine eyes

    Get PDF
    Ex vivo ocular perfused models have been described in the past and were applied in different mammalian species as platforms to test drug delivery systems and surgical techniques. However, reproduction of those methods is challenging because extensive and precise description of the protocols used is lacking. In this technical paper we provide a detailed description of all the steps to be followed from the enucleation of porcine eyes to cannulation of the ophthalmic artery and perfusion. This model can contribute to the reduction of use of living animals in ophthalmology research, whereas as opposed to in vitro models, it preserves tissue complexity and integrity
    corecore