18 research outputs found

    Novel cerebrospinal fluid biomarkers of glucose transporter type 1 deficiency syndrome: Implications beyond the brain's energy deficit

    Get PDF
    We used next-generation metabolic screening to identify new biomarkers for improved diagnosis and pathophysiological understanding of glucose transporter type 1 deficiency syndrome (GLUT1DS), comparing metabolic cerebrospinal fluid (CSF) profiles from 12 patients to those of 116 controls. This confirmed decreased CSF glucose and lactate levels in patients with GLUT1DS and increased glutamine at group level. We identified three novel biomarkers significantly decreased in patients, namely gluconic + galactonic acid, xylose-α1-3-glucose, and xylose-α1-3-xylose-α1-3-glucose, of which the latter two have not previously been identified in body fluids. CSF concentrations of gluconic + galactonic acid may be reduced as these metabolites could serve as alternative substrates for the pentose phosphate pathway. Xylose-α1-3-glucose and xylose-α1-3-xylose-α1-3-glucose may originate from glycosylated proteins; their decreased levels are hypothetically the consequence of insufficient glucose, one of two substrates for O-glucosylation. Since many proteins are O-glucosylated, this deficiency may affect cellular processes and thus contribute to GLUT1DS pathophysiology. The novel CSF biomarkers have the potential to improve the biochemical diagnosis of GLUT1DS. Our findings imply that brain glucose deficiency in GLUT1DS may cause disruptions at the cellular level that go beyond energy metabolism, underlining the importance of developing treatment strategies that directly target cerebral glucose uptake

    Mass Spectrometry-Based Identification of Ortho-, Meta- and Paraisomers Using Infrared Ion Spectroscopy

    No full text
    Distinguishing positional isomers, such as compounds having different substitution patterns on an aromatic ring, presents a significant challenge for mass spectrometric analyses and is a frequently encountered difficulty in, for example, drug metabolism research. Here, we demonstrate infrared ion spectroscopy (IRIS) as a promising new mass spectrometry-based technique that easily differentiates between positional isomers of disubstituted phenyl-containing compounds. By analyzing different substitution patterns over several sets of isomeric compounds, we show that IRIS produces a highly consistent and distinct pattern of IR bands, especially in the range between 650 and 900 cm-1, that are mostly independent of the specific chemical functionality contained in the substituent group. These patterns are accurately predicted by quantum-chemically computed IR spectra and correspond well with tabulated IR group-frequencies known from conventional absorption spectroscopy. Therefore, we foresee that this method will be generally applicable to disubstituted phenyl-containing compounds and that direct interpretation of experimental IRIS spectra in terms of ortho-, meta- or para-substitution is possible, even without comparison to experimental or computationally predicted reference spectra. Strategies for the analysis of larger compounds having more congested IR spectra as well as of compounds having low (electrospray) ionization efficiencies are presented in order to demonstrate the broad applicability of this methodology.<br /

    Molecular identification in metabolomics using infrared ion spectroscopy

    No full text
    Small molecule identification is a continually expanding field of research and represents the core challenge in various areas of (bio)analytical science, including metabolomics. Here, we unequivocally differentiate enantiomeric N-Acetylhexosamines in body fluids using infrared ion spectroscopy, providing orthogonal identification of molecular structure unavailable by standard liquid chromatography/high-resolution tandem mass spectrometry. These results illustrate the potential of infrared ion spectroscopy for the identification of small molecules from complex mixtures

    Targeted Small-Molecule Identification Using Heartcutting Liquid Chromatography-Infrared Ion Spectroscopy

    No full text
    Infrared ion spectroscopy (IRIS) can be used to identify molecular structures detected in mass spectrometry (MS) experiments and has potential applications in a wide range of analytical fields. However, MS-based approaches are often combined with orthogonal separation techniques, in many cases liquid chromatography (LC). The direct coupling of LC and IRIS is challenging due to the mismatching timescales of the two technologies: an IRIS experiment typically takes several minutes, whereas an LC fraction typically elutes in several seconds. To resolve this discrepancy, we present a heartcutting LC-IRIS approach using a setup consisting of two switching valves and two sample loops as an alternative to direct online LC-IRIS coupling. We show that this automated setup enables us to record multiple IR spectra for two LC-features from a single injection without degrading the LC-separation performance. We demonstrate the setup for application in drug metabolism research by recording six m/z-selective IR spectra for two drug metabolites from a single 2 μL sample of cell incubation extract. Additionally, we measure the IR spectra of two closely eluting diastereomeric biomarkers for the inborn error of metabolism pyridoxine-dependent epilepsy (PDE-ALDH7A1), which shows that the heartcutting LC-IRIS setup has good sensitivity (requiring ∼μL injections of ∼μM samples) and that the separation between closely eluting isomers is maintained. We envision applications in a range of research fields, where the identification of molecular structures detected by LC–MS is required

    Targeted small molecule identification using heartcutting liquid chromatography–infrared ion spectroscopy

    No full text
    Infrared ion spectroscopy (IRIS) can be used to identify molecular structures detected in mass spectrometry (MS) experiments and has potential applications in a wide range of analytical fields. However, MS-based approaches are often combined with orthogonal separation techniques, in many cases liquid chromatography (LC). The direct coupling of LC and IRIS is challenging due to the mismatching timescales of the two technologies: an IRIS experiment typically takes several minutes, whereas an LC fraction typically elutes in less than a minute. To resolve this discrepancy, we present a heartcutting LC-IRIS approach using a setup consisting of two switching valves and two sample loops as an alternative to direct online LC-IRIS coupling. We show that this automated setup enables us to record multiple IR spectra for two LC-features from a single injection without degrading the LC-separation performance. We demonstrate the setup for application in drug metabolism research by recording six m/z-selective IR spectra for two drug metabolites from a single 2 µl sample of cell incubation extract. Additionally, we measure the IR spectra of two closely eluting diastereomeric biomarkers for the inborn error of metabolism pyridoxine dependent epilepsy (PDE-ALDH7A1), which shows that the heartcutting LC-IRIS setup has good sensitivity (requiring ~µl injections of ~µM samples) and that the separation between closely eluting isomers is maintained. We envision applications in a range of research fields, where the identification of molecular structures detected by LC-MS is required
    corecore