22 research outputs found

    the role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants

    Get PDF
    Abstract The use of bioeffectors, formally known as plant biostimulants, has become common practice in agriculture and provides a number of benefits in stimulating growth and protecting against stress. A biostimulant is loosely defined as an organic material and/or microorganism that is applied to enhance nutrient uptake, stimulate growth, enhance stress tolerance or crop quality. This review is intended to provide a broad overview of known effects of biostimulants and their ability to improve tolerance to abiotic stresses. Inoculation or application of extracts from algae or other plants have beneficial effects on growth and stress adaptation. Algal extracts, protein hydrolysates, humic and fulvic acids, and other compounded mixtures have properties beyond basic nutrition, often enhancing growth and stress tolerance. Non-pathogenic bacteria capable of colonizing roots and the rhizosphere also have a number of positive effects. These effects include higher yield, enhanced nutrient uptake and utilization, increased photosynthetic activity, and resistance to both biotic and abiotic stresses. While most biostimulants have numerous and diverse effects on plant growth, this review focuses on the bioprotective effects against abiotic stress. Agricultural biostimulants may contribute to make agriculture more sustainable and resilient and offer an alternative to synthetic protectants which have increasingly falling out of favour with consumers. An extensive review of the literature shows a clear role for a diverse number of biostimulants that have protective effects against abiotic stress but also reveals the urgent need to address the underlying mechanisms responsible for these effects. Graphical abstract Biostimulants have protective effects against abiotic stress

    Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions

    Get PDF
    Background: The emerging roles of rhizobacteria in improving plant nutrition and stress protection have great potential for sustainable use in saline soils. We evaluated the function of the salt-tolerant strain Azotobacter chroococcum 76A as stress protectant in an important horticultural crop, tomato. Specifically we hypothesized that treatment of tomato plants with A. chroococcum 76A could improve plant performance under salinity stress and sub-optimal nutrient regimen. Results: Inoculation of Micro Tom tomato plants with A. chroococcum 76A increased numerous growth parameters and also conferred protective effects under both moderate (50 mM NaCl) and severe (100 mM NaCl) salt stresses. These benefits were mostly observed under reduced nutrient regimen and were less appreciable in optimal nitrogen conditions. Therefore, the efficiency of A. chroococcum 76A was found to be dependent on the nutrient status of the rhizosphere. The expression profiles of LEA genes indicated that A. chroococcum 76A treated plants were more responsive to stress stimuli when compared to untreated controls. However, transcript levels of key nitrogen assimilation genes revealed that the optimal nitrogen regimen, in combination with the strain A. chroococcum 76A, may have saturated plant’s ability to assimilate nitrogen. Conclusions: Roots inoculation with A. chroococcum 76A tomato promoted tomato plant growth, stress tolerance and nutrient assimilation efficiency under moderate and severe salinity. Inoculation with beneficial bacteria such as A. chroococcum 76A may be an ideal solution for low-input systems, where environmental constraints and limited chemical fertilization may affect the potential yield

    Transcriptomic and splicing changes underlying tomato responses to combined water and nutrient stress

    Get PDF
    Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs

    Ascophyllum nodosum Based Extracts Counteract Salinity Stress in Tomato by Remodeling Leaf Nitrogen Metabolism

    Get PDF
    Biostimulants have rapidly and widely been adopted as growth enhancers and stress protectants in agriculture, however, due to the complex nature of these products, their mechanism of action is not clearly understood. By using two algal based commercial biostimulants in combination with the Solanum lycopersicum cv. MicroTom model system, we assessed how the modulation of nitrogen metabolites and potassium levels could contribute to mediate physiological mechanisms that are known to occur in response to salt/and or osmotic stress. Here we provide evidence that the reshaping of amino acid metabolism can work as a functional effector, coordinating ion homeostasis, osmotic adjustment and scavenging of reactive oxygen species under increased osmotic stress in MicroTom plant cells. The Superfifty biostimulant is responsible for a minor amino acid rich-phenotype and could represent an interesting instrument to untangle nitrogen metabolism dynamics in response to salinity and/or osmotic stress

    Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants

    No full text
    Seaweeds extracts (SWE) are widely used to improve plant growth, quality and stress tolerance. However, the functional link between the complex composition of these products and their mechanisms of action has been only marginally addressed. A greenhouse experiment was performed on Microtom tomato plants in order to evaluate the effect of two Ascophyllum nodosum based algal derivatives, Rygex (R) and Super Fifty (SF), on a tomato exposed to salinity (0, 42.5 and 85 mM NaCl) and normal and reduced nutrient availability (100% and 70% of the standard regimen). Bioactive compounds with beneficial effects on growth and stress adaptation characterized via gas chromatography–mass spectrometry analysis (GC-MS). Enhanced growth of 13% was observed in Super Fifty treatment under a full-strength nutritional regimen, independent of the salinity treatment. Although Rygex and Super Fifty treatments did not significantly enhance plant growth and yield under salt treatment, they enhanced the accumulation of minerals, antioxidants, and essential amino acids in tomato fruits, with an overall improvement in nutritional value. Overall, SWE may affect and ameliorate different aspects of nutrition and stress tolerance and thus contribute to the sustainability of agricultural systems. Elucidating the link between bioactive compounds in SWE and plant responses will be critical to characterizing the mechanism of action of SWE.Seaweed extracts (SWE) are widely used to improve plant growth, fruit quality, and stress tolerance. However, the functional link between the complex composition of algal-based products and their mechanisms of action has been only marginally addressed. A greenhouse experiment was performed on Microtom tomato plants in order to evaluate the effect of two Ascophyllum nodosum-based algal derivatives, Rygex (R) and Super Fifty (SF), on a tomato exposed to salinity (0, 42.5, and 85 mM NaCl) and normal and reduced nutrient availability (100 and 70% of the standard regimen). Bioactive compounds, with possible beneficial effects on growth and stress adaptation, were characterized via gas chromatography-mass spectrometry analysis (GC-MS). Enhanced growth of 13% was observed with Super Fifty treatment under a full-strength nutritional regimen, independent of the salinity treatment. Although Rygex and Super Fifty treatments did not significantly enhance plant growth and yield under salt treatment, they enhanced the accumulation of minerals, antioxidants, and essential amino acids in tomato fruits, with an overall improvement in nutritional value. Overall, SWE may affect and ameliorate different aspects of nutrition and stress tolerance and thus contribute to the sustainability of agricultural systems. Elucidating the link between bioactive compounds in SWE and plant responses will be critical to characterizing the mechanism of action of SWE

    Biostimulant Activity of Azotobacter chroococcum and Trichoderma harzianum in Durum Wheat under Water and Nitrogen Deficiency

    No full text
    Biostimulants hold great potential for developing integrated sustainable agriculture systems. The rhizobacteria Azotobacter chroococcum strain 76A and the fungus Trichoderma harzianum strain T22, with demonstrated biostimulant activity in previous systems, were evaluated in Triticum durum cv Creso for their ability to enhance growth and tolerance to drought stress. Growth and drought tolerance were evaluated in conditions of low and high soil nitrogen, with two levels of water stress. T. harzianum increased plant growth (+16%) under control conditions and tolerance to moderate drought stress (+52%) under optimal fertilization, while A. chroococcum conferred a growth penalty (−28%) in well-watered conditions under suboptimal fertilization and increased tolerance only under extreme drought stress (+15%). This growth penalty was ameliorated by nitrogen fertilization. T. harzianum abundance was found to be positively correlated to extreme soil drying, whereas A. chroococcum-induced tolerance was dependent on soil nitrogen availability. These results indicate that while biostimulants may enhance growth and stress tolerance, nutrient availability soil and environmental conditions heavily influence these responses. These interactions should be considered when designing biostimulant products targeted to specific cultural conditions

    Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato

    Get PDF
    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts putatively involved in stomatal movements. This transcriptomic study has yielded promising candidate genes that merit further functional studies to confirm their involvement in drought tolerance and recovery. Together, our results contribute to a better understanding of the coordinated responses taking place under drought stress and recovery in adult plants of tomato
    corecore