21 research outputs found

    Canine candidate genes for dilated cardiomyopathy: annotation of and polymorphic markers for 14 genes

    Get PDF
    BackgroundDilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. These genes mainly encode structural proteins of the cardiac myocyte.ResultsWe present the annotation of, and marker development for, 14 of these genes of the dog genome, i.e. alpha-cardiac actin, caveolin 1, cysteine-rich protein 3, desmin, lamin A/C, LIM-domain binding factor 3, myosin heavy polypeptide 7, phospholamban, sarcoglycan delta, titin cap, alpha-tropomyosin, troponin I, troponin T and vinculin. A total of 33 Single Nucleotide Polymorphisms were identified for these canine genes and 11 polymorphic microsatellite repeats were developed.ConclusionThe presented polymorphisms provide a tool to investigate the role of the corresponding genes in canine Dilated Cardiomyopathy by linkage analysis or association studies

    Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial

    Get PDF
    Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort

    Duplication of the proteolipid protein gene is the major cause of Pelizaeus-Merzbacher disease

    No full text
    Background/Objective: Pelizaeus-Merzbacher disease (PMD), an X-linked recessive dysmyelination disorder, is caused by mutations in the proteolipid protein (PLP) gene. However, missense mutations were only found in a fraction of PMD patients, even in families that showed linkage with the PLP locus on Xq22. Here we describe the use of an extended protocol that includes screening for both missense mutations and duplications. Method: Two groups of patients were analyzed, one group with 10 independent PMD families and one group with 24 sporadic patients suspected of PMD. Missense mutations in the PLP gene were identified by sequencing. PLP gene duplications were detected by quantitative polymerase chain reaction and/or Southern blot analysis. Results: Sequencing of the PLP gene revealed four mutations in group i and one mutation in group 2. However, inclusion of duplication analysis in the screening protocol raised the amount of mutations found in group 1 from 40 to 90%, and in group 2 from 4 to 25%. Conclusions: These results demonstrate that duplications of the PLP gene are the major cause of PMD. Furthermore, it appears that the phenotype resulting from PLP duplications is relatively mild, and that many probands are nontypical PMD patients

    Evaluation of 15 candidate genes for dilated cardiomyopathy in the Newfoundland dog

    No full text
    Dilated cardiomyopathy (DCM) is a disease of the myocardium, which causes heart failure and premature death. It has been described in humans and several domestic animals. In the Newfoundland dog, DCM is an autosomal dominant disease with late onset and reduced penetrance. We analyzed 15 candidate genes for their involvement in DCM in the Newfoundland dog. Polymorphic microsatellite markers and single Nucleotide Polymorphisms were genotyped in 4 families of Newfoundland dogs segregating dilated cardiomyopathy for the genes encoding a-cardiac actin (ACTC), caveolin (CAVI), cysteine-rich protein 3 (CSRP3), LIM-domain binding factor 3 (LDB3), desmin (DES), lamin A/C (LMNA), myosin heavy polypeptide 7 (MYH7), delta-sarcoglycan (SGCD), troponin I (TNNTI3), troponin T (TNNT2), alpha-tropomyosin (TPMI), titin (TTN) and vinculin (VCL). A Logarithm of the odds (LOD) score of less than2.0 in 2-point linkage analysis indicated exclusion of all but 2 genes, encoding CSRP3 and DES. A (LOD) score between1.5 and2.0 for CSRP3 and DES makes these genes unlikely causes of DCM in this dog breed. For the phospholamban (PLN) and titin cap (TTN) genes, a direct mutation screening approac

    The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan x European white pig intercross.

    Full text link
    A paternally expressed QTL for muscle growth and backfat thickness (BFT) has previously been identified near the IGF2 locus on the distal tip of pig chromosome 2 (SSC2p) in three experimental F2 populations. Recently, a mutation in a regulatory element of the IGF2 gene was identified as the quantitative trait nucleotide (QTN) underlying the major QTL effect on muscle growth and BFT in crosses between Large White and Wild Boar or Pietrain. This study demonstrates that the IGF2 mutation also controls the paternally expressed QTL for backfat thickness in a cross between Meishan and European Whites. In addition, a comparison of QTL of backfat thickness measured by Hennessy grading probe (HGP) and by ultrasound measurement (USM) was made. In the USM analyses, the IFG2 mutation explains the entire QTL effect on SSC2p, whereas in the HGP analysis the presence of a second minor QTL can not be excluded. Finally, this study shows that this particular IGF2 mutation does not cause the paternally expressed QTL for teat number mapping to the same region of SSC2p as the BFT QTL

    A (G-to-A) mutation in the initiation codon of the proteolipid protein gene causing a relatively mild form of Pelizaeus-Merzbacher disease in a Dutch family

    No full text
    Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive disorder that is characterized by dysmyelination of the central nervous system resulting from mutations in the proteolipid protein (PLP) gene. Mutations causing either overexpression or expression of a truncated form of PLP result in oligodendrocyte cell death because of accumulation of PLP in the endoplasmic reticulum. It has therefore been hypothesized that absence of the protein should result in a less severe phenotype. However, until now, only one patient has been described with a complete deletion of the PLP gene. We report a Dutch family with a relatively mild form of PMD, in which the disease cosegregates with a (G-to-A) mutation in the initiation codon of the PLP gene. This mutation should cause the total absence of PLP and is therefore in agreement with the hypothesis that absence of PLP leads to a mild form of PMD
    corecore