137 research outputs found
CDNA cloning and mRNA expression of the six mouse insulin-like growth factor binding proteins
The insulin-like growth factor binding proteins (IGFBPs) comprise a family of six distinct proteins which modulate insulin-like growth factor action. We have isolated cDNAs encoding the six mouse IGFBPs (mIGFBPs). In addition, we studied the mRNA expression of the six mIGFBPs during development and in various adult tissues. Our results show that each of the six mIGFBPs is highly homologous to their human and rat counterparts, whereas only the N and C terminal ends are conserved between the six mIGFBPs. Northern blotting revealed that mIGFBP-2, -3, -4 and -5 genes are already expressed at gestational day 11.5, suggesting a role for these mIGFBPs in embryonal development. In liver, a peak of mIGFBP-1 mRNA expression was found around birth, suggesting a function for mIGFBP-1 in the newborn mouse. Finally, tissue-specific expression of the six mouse IGFBP genes was observed in adult tissues suggesting different roles or modes of actions in adult life
Characterization of a three-dimensional mucosal equivalent: Similarities and differences with native oral mucosa
The aim of this study was to create and characterize a tissue-engineered mucosal equivalent (TEM) that closely resembles native mucosa. TEM consists of human primary keratinocytes and fibroblasts isolated from biopsies taken from healthy donors and seeded onto a de-epidermized dermis and cultured for 14 days at the air/liquid interface. The structure of TEM was examined and compared with native nonkeratinizing oral mucosa (NNOM). The various components of the newly formed epidermal layer, basement membrane and underlying connective tissue were analyzed using immunohistochemistry. The mucosal substitute presented in this study showed a mature stratified squamous epithelium that was similar to that of native oral mucosa, as demonstrated by K19, desmoglein-3 and involucrin staining. In addition, the expression of basement membrane components collagen type IV, laminin-5 and integrin α6 and β4 in TEM proved to be consistent with native oral mucosa. The expression of PAS, Ki67, K10 and K13, however, appeared to be different in TEM compared to NNOM. Nevertheless, the similarities with native oral mucosa makes TEM a promising tool for studying the biology of mucosal pathologies such as oral mucositis or fibrosis as well as the development of new therapies. Copyrigh
Dose-response effects of a new growth hormone receptor antagonist (B2036-PEG) on circulating, hepatic and renal expression of the growth hormone/insulin-like growth factor system in adult mice
The effects of growth hormone (GH) in regulating the expression of the
hepatic and renal GH and insulin-like growth factor (IGF) system were
studied by administering a novel GH receptor antagonist (GHRA) (B2036-PEG)
at different doses (0, 1.25, 2.5, 5 and 10 mg/kg/day) to mice for 7 days.
No differences were observed in the groups with respect to body weight,
food consumption or blood glucose. However, a dose-dependent decrease was
observed in circulating IGF-I levels and in hepatic and renal IGF-I levels
at the highest doses. In contrast, in the 5 and 10 mg/kg/day GHRA groups,
circulating and hepatic transcriptional IGF binding protein-3 (IGFBP-3)
levels were not modified, likely resulting in a significantly decreased
IGF-I/IGFBP-3 ratio. Hepatic GH receptor (GHR) and GH binding protein
(GHBP) mRNA levels increased significantly in all GHRA dosage groups.
Endogenous circulatory GH levels increased significantly in the 2.5 and 5
mg/kg/day GHRA groups. Remarkably, increased circulating IGFBP-4 and
hepatic IGFBP-4 mRNA levels were observed in all GHRA administration
groups. Renal GHR and GHBP mRNA levels were not modified by GHRA
administration at the highest doses. Also, renal IGFBP-3 mRNA levels
remained unchanged in most GHRA administration groups, whereas IGFBP-1, -4
and -5 mRNA levels were significantly increased in the 5 and 10 mg/kg/day
GHRA administration groups. In conclusion, the effects of a specific GHR
blockade on circulating, hepatic and renal GH/IGF axis reported here, may
prove useful in the future clinical use of GHRAs
The role of the IGF axis in IGFBP-1 and IGF-I induced renal enlargement in Snell dwarf mice
Insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) is generally
believed to inhibit IGF action in the circulation. In contrast, IGFBP-1
has been reported to interact with cell surfaces and enhance IGF-I action
locally in some tissues. Renal IGFBP-1 levels are found elevated in
various conditions characterized by renal growth (e.g. diabetes mellitus,
hypokalemia). To test whether IGFBP-1 is a renotropic factor, IGFBP-1 was
administered alone or in combination with IGF-I to Snell dwarf mice, an in
vivo model without compensatory feedback effects on growth hormone (GH)
secretion. In three control groups of Snell dwarf mice, placebo, GH or
IGF-I was administered. Compared with placebo, kidney weight increased in
all treated groups, however, with different effects on kidney morphology.
Administration of IGF-I, alone or in combination with IGFBP-1, tended to
increase glomerular volume, while no changes were seen in the other
groups. Administration of IGFBP-1 or IGFBP-1+IGF-I both caused dilatation
of the thin limbs of Henle's loop, while GH or IGF-I administration had no
visible effect. Furthermore, IGF-I administration resulted in an increased
mean number of nuclei per cortical area and renal weight, whereas GH,
IGF-I+IGFBP-1 or IGFBP-1 caused a decreased renal nuclei number. In situ
hybridization and immunohistochemistry showed specific changes of the
renal IGF system expression patterns in the different groups.
Particularly, IGFBP-1 administration resulted in extensive changes in the
mRNA expression of the renal IGF system, whereas the other administration
regimen resulted in less prominent modifications. In contrast,
administration of IGFBP-1 and IGFBP-1+IGF-I resulted in identical changes
in the protein expression of the renal IGF system. Our results indicate
that IGFBP-1, alone or in combination with IGF-I, demonstrated effects on
the renal tubular system that differ from the effects of IGF-I
Hyperbaric oxygen therapy for wound healing in diabetic rats: Varying efficacy after a clinically-based protocol
Hyperbaric oxygen therapy (HBOT) is a clinical treatment in which a patient breathes pure oxygen for a limited period of time at an increased pressure. Although this therapy has been used for decades to assist wound healing, its efficacy for many conditions is unproven and its mechanism of action is not yet fully clarified. This study investigated the effects of HBOT on wound healing using a diabetes-impaired pressure ulcer rat model. Seven weeks after streptozotocin-induced diabetes in rats (n = 55), a pressure ulcer was created on dorsal skin. Subsequently, animals received HBOT during 6 weeks following a standard clinical protocol (HBOT group with varying endpoints up to 42 days post-wounding) versus controls without HBOT. Capillary venous oxygen saturation (SO2) showed a significant increase in the HBOT group on day 24; however, this increase was significant at this time point only. The quantity of hemoglobin in the micro-blood vessels (rHB) showed a significant decrease in the HBOT group on days 21 and 42, and showed a trend to decrease on day 31. Blood flow in the microcirculation showed a significant increase on days 17, 21 and 31 but a significant decrease on days 24 and 28. Inflammation scoring showed significantly decreased CD68 counts in the HBOT group on day 42, but not in the early stages of wound healing. Animals in the HBOT group showed a trend for an increase in mean wound breaking strength on day 42
Hyperbaric oxygen therapy to treat diabetes impaired Wound healing in rats
Wound healing in diabetes is frequently impaired and its treatment remains a challenge. Hyperbaric oxygen therapy (HBOT) receives a wide attendance and is often used as a last resort treatment option, however, its effectiveness for many conditions is unproven. We tested the effect of HBOT on healing of diabetic ulcers in an animal experimental setting. Experimental diabetes was induced by intraperitoneal injection of streptozotocin. Four weeks after diabetes induction, rats were ulcerated by clamping a pair of magnet disks on the dorsal skin for 16 h. After magnet removal, the animals received HBOT, daily on weekdays, for 4 weeks. To examine the effect of HBOT on diabetes impaired wound healing, the degree of wound tissue perfusion, inflammation, angiogenesis, and tissue breaking strength were evaluated. HBOT effects on the degree of inflammation and number of blood vessels could not be observed. HBOT improved the tissue breaking strength of the wound, however, this did not reach statistical significance. Twenty hours after ending the HBOT, a significantly improved oxygen saturation of the hemoglobin at the venous end of the capillaries and the quantity of hemoglobin in the micro-blood vessels was measured
Ultrasound imaging of the rabbit peroneal nerve
Ultrasound imaging of peripheral nerves is increasingly used in the clinic for a wide range of applications. Although yet unapplied for experimental neuroscience, it also has potential value in this research area. This study explores the feasibility, possibilities and limitations of this technique in rabbits, with special focus on peripheral nerve regeneration after trauma. The peroneal nerve of 25 New Zealand White rabbits was imaged at varying time intervals after a crush lesion. The ultrasonic appearance of the nerve was determined, and recordings were validated with in vivo anatomy. Nerve swelling at the lesion site was estimated from ultrasound images and compared with anatomical parameters. The peroneal nerve could reliably be identified in all animals, and its course and anatomical variations agreed perfectly with anatomy. Nerve diameters from ultrasound were related to in vivo diameters (p < 0.001, R2 = 77%), although the prediction interval was rather wide. Nerve thickenings could be visualized and preliminary results indicate that ultrasound can differentiate between neuroma formation and external nerve thickening. The value of the technique for experimental neuroscience is discussed. We conclude that ultrasound imaging of the rabbit peroneal nerve is feasible and that it is a promising tool for different research areas within the field of experimental neuroscience
An early diagnostic tool for diabetic peripheral neuropathy in rats
The skin's rewarming rate of diabetic patients is used as a diagnostic tool for early diagnosis of diabetic neuropathy. At present, the relationship between microvascular changes in the skin and diabetic neuropathy is unclear in streptozotocin (STZ) diabetic rats. The aim of this study was to investigate whether the skin rewarming rate in diabetic rats is related to microvascular changes and whether this is accompanied by changes observed in classical diagnostic methods for diabetic peripheral neuropathy. Computer-assisted infrared thermography was used to assess the rewarming rate after cold exposure on the plantar skin of STZ diabetic rats' hind paws. Peripheral neuropathy was determined by the density of intra-epidermal nerve fibers (IENFs), mechanical sensitivity, and electrophysiological recordings. Data were obtained in diabetic rats at four, six, and eight weeks after the induction of diabetes and in controls. Four weeks after the induction of diabetes, a delayed rewarming rate, decreased skin blood flow and decreased density of IENFs were observed. However, the mechanical hyposensitivity and decreased motor nerve conduction velocity (MNCV) developed 6 and 8 weeks after the induction of diabetes. Our study shows that the skin rewarming rate is related to microvascular changes in diabetic rats. Moreover, the skin rewarming rate is a non-invasive method that provides more information for an earlier diagnosis of peripheral neuropathy than the classical monofilament test and MNCV in STZ induced diabetic rats
- …