859 research outputs found
Ultrafast electron diffraction using an ultracold source
We present diffraction patterns from micron-sized areas of mono-crystalline
graphite obtained with an ultracold and ultrafast electron source. We show that
high spatial coherence is manifest in the visibility of the patterns even for
picosecond bunches of appreciable charge, enabled by the extremely low source
temperature (~ 10 K). For a larger, ~ 100 um spot size on the sample, spatial
coherence lengths > 10 nm result, sufficient to resolve diffraction patterns of
complex protein crystals. This makes the source ideal for ultrafast electron
diffraction of complex macromolecular structures such as membrane proteins, in
a regime unattainable by conventional photocathode sources. By further reducing
the source size, sub-um spot sizes on the sample become possible with spatial
coherence lengths exceeding 1 nm, enabling ultrafast nano-diffraction for
material science.Comment: 5 pages, 4 figure
A Solvable Model of Secondary Structure Formation in Random Hetero-Polymers
We propose and solve a simple model describing secondary structure formation
in random hetero-polymers. It describes monomers with a combination of
one-dimensional short-range interactions (representing steric forces and
hydrogen bonds) and infinite range interactions (representing polarity forces).
We solve our model using a combination of mean field and random field
techniques, leading to phase diagrams exhibiting second-order transitions
between folded, partially folded and unfolded states, including regions where
folding depends on initial conditions. Our theoretical results, which are in
excellent agreement with numerical simulations, lead to an appealing physical
picture of the folding process: the polarity forces drive the transition to a
collapsed state, the steric forces introduce monomer specificity, and the
hydrogen bonds stabilise the conformation by damping the frustration-induced
multiplicity of states.Comment: 24 pages, 14 figure
Survey propagation for the cascading Sourlas code
We investigate how insights from statistical physics, namely survey
propagation, can improve decoding of a particular class of sparse error
correcting codes. We show that a recently proposed algorithm, time averaged
belief propagation, is in fact intimately linked to a specific survey
propagation for which Parisi's replica symmetry breaking parameter is set to
zero, and that the latter is always superior to belief propagation in the high
connectivity limit. We briefly look at further improvements available by going
to the second level of replica symmetry breaking.Comment: 14 pages, 5 figure
The underlying challenges that arise when analysing short-chain chlorinated paraffins in environmental matrices
As short-chain chlorinated paraffins (SCCPs) are listed on several monitoring programs, validated methods are essential. However, their complexity and the lack of commercially available certified reference materials (RMs) hinder a proper validation of methods. Instead, one method is usually ‘validated’ by evaluating performances and results of spiked materials with that of one other method, which could easily lead to unreliable results. This study evaluated four analytical methods with different principles (i.e. comprehensive two dimensional GC coupled to a micro electron capture detector, developed for this study, chloride enhanced atmospheric pressure chemical ionization triple quadrupole time of flight MS (APCI-QToF-HRMS), GC coupled to an electron capture negative ion low resolution MS (GC–ECNI–LRMS) and carbon skeleton GC–MS), investigated the comparability in SCCP determination in spiked and naturally contaminated samples and determined SCCP amounts in candidate RMs for possible certification. The results cast doubt on the use of the most commonly applied method (i.e. GC–ECNI–LRMS), as well as using spiked materials for method validation. The APCI-QToF-HRMS method was found most promising as it achieves the required MS resolution (>21,000), is relatively fast and can detect also other CPs. The suitable identified SCCP levels in the candidate RMs and the agreement in results between the methods bring the first certification of a RM for SCCPs within reach
Cluster derivation of Parisi's RSB solution for disordered systems
We propose a general scheme in which disordered systems are allowed to
sacrifice energy equi-partitioning and separate into a hierarchy of ergodic
sub-systems (clusters) with different characteristic time-scales and
temperatures. The details of the break-up follow from the requirement of
stationarity of the entropy of the slower cluster, at every level in the
hierarchy. We apply our ideas to the Sherrington-Kirkpatrick model, and show
how the Parisi solution can be {\it derived} quantitatively from plausible
physical principles. Our approach gives new insight into the physics behind
Parisi's solution and its relations with other theories, numerical experiments,
and short range models.Comment: 7 pages 5 figure
Внутригодовые (сезонные) изменения общего содержания биогенных элементов и кислорода в различных районах Севастопольской бухты
Для каждого месяца в период май 1998 г. – май 1999 г. рассчитано абсолютное содержание биогенных элементов и кислорода в пяти различных районах Севастопольской бухты и для всей бухты в целом. Показано, что наиболее чистый (возле входа в бухту) и наиболее грязный (Южная бухта) районы отличаются по динамике накопления и расходования биогенных элементов. Максимальный запас неорганических форм азота, фосфора, и кремнекислоты во всех районах Севастопольской бухты, за исключением района Инкерманской бухты, приходится на январь.Total content of biogenic elements and oxygen in five different areas of the Sevastopol Bay and for the whole bay in general is estimated for each month starting from May, 1998 up to May, 1999. It is shown that the purest (near the bay entrance) and the dirtiest (the Southern Bay) areas are distinguished for dynamics of biogenic elements accumulation and expense. Maximum storage of inorganic forms of nitrogen, phosphorus and silicic acid in all the areas of the Sevastopol Bay, excepting the Inkerman Bay area, falls on January
Palaeoecological study of a Weichselian wetland site in the Netherlands suggests a link with Dansgaard-Oeschger climate oscillation
Botanical microfossils, macroremains and oribatid mites of a Weichselian interstadial deposit in the central Netherlands point to a temporary, sub-arctic wetland in a treeless landscape. Radiocarbon dates and OSL dates show an age between ca. 54.6 and 46.6 ka cal BP. The vegetation succession, starting as a peat-forming wetland that developed into a lake, might well be linked with a Dansgaard-Oeschger climatic cycle. We suggest that during the rapid warming at the start of a D-O cycle, relatively low areas in the landscape became wetlands where peat was formed. During the more gradual temperature decline that followed, evaporation diminished; the wetlands became inundated and lake sediments were formed. During subsequent sub-arctic conditions the interstadial deposits were covered with wind-blown sand. Apart from changes in effective precipitation also the climate-related presence and absence of permafrost conditions may have played a role in the formation of the observed sedimentological sequence from sand to peat, through lacustrine sediment, with coversand on top. The Wageningen sequence may correspond with D-O event 12, 13 or 14. Some hitherto not recorded microfossils were described and illustrated
Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation
The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2017.01341/full#supplementary-materialMetals play an important role in microbial metabolism by acting as cofactors for many enzymes. Supplementation of biological processes with metals may result in improved performance, but high metal concentrations are often toxic to microorganisms. In this work, methanogenic enrichment cultures growing on H2/CO2 or acetate were supplemented with trace concentrations of nickel (Ni) and cobalt (Co), but no significant increase in methane production was observed in most of the tested conditions. However, high concentrations of these metals were detrimental to methanogenic activity of the cultures. Cumulative methane production (after 6 days of incubation) from H2/CO2 was 40% lower in the presence of 8 mM of Ni or 30 mM of Co, compared to controls without metal supplementation. When acetate was used as substrate, cumulative methane production was also reduced: by 18% with 8 mM of Ni and by 53% with 30 mM of Co (after 6 days of incubation). Metal precipitation with sulphide was further tested as a possible method to alleviate metal toxicity. Anaerobic sludge was incubated with Co (30 mM) and Ni (8 mM) in the presence of sulphate or sulphide. The addition of sulphide helped to mitigate the toxic effect of the metals. Methane production from H2/CO2 was negatively affected in the presence of sulphate, possibly due to competition of hydrogenotrophic methanogens by sulphate-reducing bacteria. However, in the enrichment cultures growing on acetate, biogenically produced sulphide had a positive effect and more methane was produced in these incubations than in similar assays without sulphate addition. The outcome of competition between methanogens and sulphate-reducing bacteria is a determinant factor for the success of using biogenic sulphide as detoxification method.The research was financially supported by the People Program (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013 under REA agreement 289193. Research of AS and DS is supported by a ERC grant (project 323009) of the European Union Seventh Framework Program FP7 and a Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO).info:eu-repo/semantics/publishedVersio
- …