9,267 research outputs found

    Photoelectron spectra of fluorine substituted diazanaphthalenes: “Even cases”

    Get PDF
    The high resolution He 584 Å photoelectron spectra of three diazanaphthalenes and some of their fluorine derivatives are presented. The qualitative model that is used frequently in the discussion of lone-pair level splittings is examined

    Splash wave and crown breakup after disc impact on a liquid surface

    Full text link
    In this paper we analyze the impact of a circular disc on a free surface using experiments, potential flow numerical simulations and theory. We focus our attention both on the study of the generation and possible breakup of the splash wave created after the impact and on the calculation of the force on the disc. We have experimentally found that drops are only ejected from the rim located at the top part of the splash --giving rise to what is known as the crown splash-- if the impact Weber number exceeds a threshold value \Weber_{crit}\simeq 140. We explain this threshold by defining a local Bond number BotipBo_{tip} based on the rim deceleration and its radius of curvature, with which we show using both numerical simulations and experiments that a crown splash only occurs when Botip1Bo_{tip}\gtrsim 1, revealing that the rim disrupts due to a Rayleigh-Taylor instability. Neglecting the effect of air, we show that the flow in the region close to the disc edge possesses a Weber-number-dependent self-similar structure for every Weber number. From this we demonstrate that \Bond_{tip}\propto\Weber, explaining both why the transition to crown splash can be characterized in terms of the impact Weber number and why this transition occurs for Wecrit140We_{crit}\simeq 140. Next, including the effect of air, we have developed a theory which predicts the time-varying thickness of the very thin air cushion that is entrapped between the impacting solid and the liquid. Our analysis reveals that gas critically affect the velocity of propagation of the splash wave as well as the time-varying force on the disc, FDF_D. The existence of the air layer also limits the range of times in which the self-similar solution is valid and, accordingly, the maximum deceleration experienced by the liquid rim, what sets the length scale of the splash drops ejected when We>\Weber_{crit}

    Micromorphological Observations on Till Samples from Shackleton Range and North Victoria Land, Antarctica

    Get PDF

    Hysteretic clustering in granular gas

    Get PDF
    Granular material is vibro-fluidized in N=2 and N=3 connected compartments, respectively. For sufficiently strong shaking the granular gas is equi-partitioned, but if the shaking intensity is lowered, the gas clusters in one compartment. The phase transition towards the clustered state is of 2nd order for N=2 and of 1st order for N=3. In particular, the latter is hysteretic. The experimental findings are accounted for within a dynamical model that exactly has the above properties

    Giant bubble pinch-off

    Get PDF
    Self-similarity has been the paradigmatic picture for the pinch-off of a drop. Here we will show through high-speed imaging and boundary integral simulations that the inverse problem, the pinch-off of an air bubble in water, is not self-similar in a strict sense: A disk is quickly pulled through a water surface, leading to a giant, cylindrical void which after collapse creates an upward and a downward jet. Only in the limiting case of large Froude number the neck radius hh scales as h(logh)1/4τ1/2h(-\log h)^{1/4} \propto \tau^{1/2}, the purely inertial scaling. For any finite Froude number the collapse is slower, and a second length-scale, the curvature of the void, comes into play. Both length-scales are found to exhibit power-law scaling in time, but with different exponents depending on the Froude number, signaling the non-universality of the bubble pinch-off.Comment: 5 pages, 2 figures. Figure quality was reduced considerably and converted to greyscale to decrease file siz

    Misinformation perceived as a bigger informational threat than negativity: A cross-country survey on challenges of the news environment

    Get PDF
    This study integrates research on negativity bias and misinformation, as a comparison of how systematic (negativity) and incidental (misinformation) challenges to the news are perceived differently by audiences. Through a cross-country survey, we found that both challenges are perceived as highly salient and disruptive. Despite negativity bias in the news possibly being a more widespread phenomenon, respondents across the surveyed countries perceive misinformation as a relatively bigger threat, even in countries where negativity is estimated to be more prevalent. In conclusion, the optimism of recent research about people’s limited misinformation exposure does not seem to be reflected in audiences’ threat perceptions
    corecore