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Abstract

Feedforward control is essential to achieve good tracking performance for positioning systems
with flexible tasks. This thesis aims to obtain a model of the inverse system using solely input-
output data of a system containing non-linear dynamics of unknown structure, in order to produce
feedforward signals. To this end, the Kernel-based Inverse Model Control of Non-linear systems
(KIMCON) framework is developed to parametrize the inverse system as a non-causal non-linear
finite impulse response (NFIR) system, modeled as a Gaussian Process. Prior knowledge of the
system can be taken into account by imposing a prior on the smoothness of the non-linear inverse
dynamics using some stationary kernel function. It is shown numerically and experimentally that
in comparison to linear methods, this framework leads to increased tracking performance for a
range of non-linear systems, e.g., Wiener systems or systems subject to friction.
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Chapter 1

Introduction

Motion systems that have to perform flexible positioning tasks require feedforward control to
achieve the desired performance. Ideally, the references to be tracked are filtered by a model of
the inverse system to achieve perfect tracking [18]. For a system H, the model of H−1 can be
obtained by (i) identification of H and subsequent inversion to arrive at approximation (Ĥ)−1

[28], or (ii) direct identification of the inverse of H, leading to approximation Ĥ−1 [9]. It was
shown in [5] that the latter poses an advantage over the former, since desired properties such as

stability, smoothness, and finite preview or delay of Ĥ−1 can be enforced directly on the model.

Obtaining Ĥ−1 from physical modeling can be challenging in the presence of unknown dynamics.

Instead, Ĥ−1 can be obtained from input-output data [5]. This allows for the synthesis of control
signals to perform flexible tasks without extensive modeling of the system to be controlled.

However, the direct identification of the non-causal system Ĥ−1 in existing work (e.g., [5]) is
typically limited to linear systems. Many systems exhibit non-linear behavior [23]. Therefore,
some techniques, such as Iterative Learning Control with basis functions (BFILC) [27], parametrize

Ĥ−1 in terms of a sum of possibly non-linear basis functions and learn the corresponding weights
from input-output data. However, the selection of these basis functions from first principles is
hard, and when chosen incorrectly, it may lead to an inadequate representation of the true system
and thus reduced tracking performance.

Existing black-box and grey-box modeling approaches for non-linear systems (such as [25, 10]) are
unsuited for inverse model control using input-output data. Namely, these methods (a) are geared
towards causal systems only [20], which is inadequate to model the non-causal system H−1, (b)
offer little interpretation of the model structure [31], or (c) are applicable only to systems that
offer full state measurements [6].

This thesis aims to model H−1 as a non-causal non-linear finite impulse response (NFIR) system
[23] for the synthesis of feedforward signals for flexible tasks. The reasoning behind this is as
follows. In [5] it is shown that the inverse of non-minimum phase (NMP) linear systems H can
be identified directly from data by imposing a non-causal finite impulse response (FIR) structure
on H−1. On the other hand, the grey-box NFIR modeling techniques in [23] are shown to be
capable of modeling non-linear systems with fading memory, however, the considered systems are
exclusively causal. Hence, these techniques cannot produce feedforward signals with preview for
physical systems with possible delays and NMP dynamics.

Therefore, this thesis proposes a novel framework of feedforward control for systems with unknown
non-linear dynamics by modeling non-causal NFIR systems. In this framework, named Kernel-
based Inverse Model Control of Non-linear systems (KIMCON), H−1 is modeled as a Gaussian
Process [22], which allows for the specification of prior knowledge on the smoothness of H−1. It is

Gaussian Process Modeling for Non-Linear Feedforward Control with Task Flexibility 1



CHAPTER 1. INTRODUCTION

shown numerically and experimentally that this technique can improve motion control performance
for flexible tasks by modeling unknown non-linear dynamics from data.

This thesis is structured as follows. In Chapter 2, the control problem is formulated and the
assumptions on the setting are described. It is explained why existing methods are insufficiently
capable of solving the control problem under the given setting, and the main contributions of
this thesis are listed. In Chapter 3, the proposed KIMCON approach is explained. Subsequently,
KIMCON is applied to simulation examples in Chapter 4. Next, the approach is applied to a
desktop printer in Chapter 5. Finally, in Chapter 6 the conclusions are given, as well as some
recommendations for future work.

2 Gaussian Process Modeling for Non-Linear Feedforward Control with Task Flexibility



Chapter 2

Problem formulation

In this chapter, the control objective is formulated. The ability of some existing methods from
the field of learning control to solve this control problem is evaluated to motivate for the proposed
Gaussian Process-based solution. Finally, the contributions of this thesis are listed.

2.1 Setting and goal

Let H denote a discrete-time causal non-linear single-input single-output (SISO) system such that

H : y(t) = g(yt,ut). (2.1)

Here, y(t) ∈ R denotes the system output and u(t) ∈ R the control effort at time t ∈ N. The
sequences yt and ut are defined as yt = [y(t − 1), y(t − 2), . . . , y(t −m)]>, ut = [u(t − 1), u(t −
2), . . . , u(t − m)]>. Following [5], H−1 is assumed to be a non-causal non-linear finite impulse
response (NFIR) system.

Definition 2.1.1 (NFIR). A causal single-input single-output non-linear finite impulse response
(NFIR) system G1 with input a(t) ∈ R and output b(t) ∈ R is defined as

G1 : b(t) = f1 (a(t), a(t− 1), . . . , a(t− nc)) , (2.2)

with nc ∈ N and f1 a non-linear function. More generally, a non-causal NFIR system G2 with the
same inputs and outputs is defined as

G2 : b(t) = f2 (a(t+ nac), a(t+ nac − 1), . . . , a(t− nc)) , (2.3)

with nac ∈ N and f2 a non-linear function. �

This leads to the following non-causal NFIR description of the inverse system H−1:

H−1 : u(t) = f(xt) + ε ∈ R, (2.4)

such that u(t) denotes the control effort required to generate the sequence xt = [y(t+nac), . . . , y(t−
nc)]

> ∈ Rnθ , nθ = nac + nc + 1. The scalars nac and nc represent the number of (anti-causal)
preview samples and (causal) delayed samples respectively. The control effort is assumed to be
affected by noise ε ∼ N (0, σ2

n), see Figure 2.1.

Remark 1. If g and f are linear functions, H is a FIR system and the setting just described
is equivalent to the setting in [5]. A value of nc greater than zero then allows (2.4) to be a
representation of the inverse of non-minimum phase system H. �

Gaussian Process Modeling for Non-Linear Feedforward Control with Task Flexibility 3



CHAPTER 2. PROBLEM FORMULATION

Figure 2.1: An open-loop setting with noise acting on the control effort.

+   
-

Figure 2.2: Feedback loop with parallel feedforward.

The goal is for H to track a number of known reference paths R := {r1, . . . , rnR} with ri =
[r(0), . . . , r(Ti − 1)]>∀i ∈ [1, . . . , nR], where Ti denotes the number of samples of task i. To this
end, any path ri in R is split into overlapping sequences x∗,t = [r(t+ nac), . . . , r(t− nc)]>, ∀ t ∈
[0, . . . , Ti − 1] such that f(x∗,t) denotes the control effort u(t) to produce reference sequence

x∗,t ∈ R. In this setting, the goal is to obtain a (non-linear) model Ĥ−1 of f(x) such that a
feedforward signal (or control effort) uff ∈ RTi can be computed for any ri ∈ R. This model is to
be used to minimize the tracking errors ei ∈ RTi using the control scheme depicted in Figure 2.2.

It is assumed that sufficient prior knowledge of H is available for a data-set D = {u(t), y(t)}Nt=1

to be obtained that contains observations of sequences xt = [y(t + nac), . . . , y(t − nc)]> that are
similar to reference sequences x∗,t = [r(t + nac), . . . , r(t − nc)]> ∈ R, where similarity is defined
by Euclidian distance in Rnθ . Note that N denotes the total number of samples u(t) matching
with observed sequences xt. This condition is explained in detail in Section 3.4. Effectively, it

poses the requirement that some initial approximate model Ĥ−1
prior or feedback controller C is

available.

2.2 Existing methods and their shortcomings

Numerous approaches exist that aim to achieve the goal of letting system H produce reference
outputs R. A number of these will be covered briefly and compared by their ability to satisfy the
following requirements:

R1: The approach must be able to model non-causal systems, such that it is applicable to inverse
model control.

R2: For a SISO system H, the approach must use output data y, as opposed to relying on full
state measurements.

R3: The approach must be able to produce feedforward signals for a variety of tasks, extrapolating
from the data-set.

R4: The approach must be able to model systems with non-linear dynamics of unknown structure.

These requirements are assessed for various control techniques in Table 2.1. In the remainder of
this section, the ability of these techniques to satisfy the requirements is elaborated.

4 Gaussian Process Modeling for Non-Linear Feedforward Control with Task Flexibility



CHAPTER 2. PROBLEM FORMULATION

2.2.1 Motion control for systems with prescribed non-linear dynamics

One technique to let a system H track R is Iterative Learning Control (ILC) [11], satisfying R1
and R2, as well as R4 under certain conditions. This approach updates the feedforward signal
uff,j+1 based on the error ej at trial j. Although ILC can in many cases reduce the error down to
reproducible behavior, it converges to work for only a single reference R = {r1}, i.e., it does not
satisfy R3.

For multiple references in R (i.e., task flexibility), as posed in R3, ILC with basis functions [27]
can be used, as explained in Appendix B. By approximating H−1 with the parametrization

Ĥ−1 : uff = Ψ(r)v, (2.5)

where Ψ(r) ∈ RT×nv is a basis containing polynomial functions of r, and iteratively learning
the parameters v ∈ Rnv , multiple references in R can be tracked after converging for only one.
However, this technique requires explicit knowledge of the (non-linear) dynamics Ψ(r), which may
not be (completely) available, thus it does not satisfy R4. Additionally, similar to ILC it requires
explicit model-knowledge of the process sensitivity for convergence.

Alternatively, kernel-based regularization (KBR) [5] can be used to identify a non-causal model

Ĥ−1 from data, to be used for feedforward. While KBR allows for task flexibility, it is aimed
exclusively at linear systems, and hence R4 is not satisfied by this approach either.

2.2.2 Motion control for systems with unknown non-linear dynamics

Some methods learn the non-linear structure of systems from data, instead of expert knowledge,
to satisfy R4. One such method is Probabilistic Inference for Learning Control (PILCO) [6]. By
modeling H as a Gaussian Process (see Section 3.2) and conducting internal simulations, PILCO
uses gradient-based optimization to learn a policy

u(t) = π(x̃t, θ̃), (2.6)

to minimize some cost J(x̃f ) of the final state x̃f . Here, x̃t is a vector of measured system states

and θ̃ a vector of learned policy parameters. However, similar to ILC, PILCO converges to learn
a policy that works for only a single reference in R and thus it does not satisfy R3. By relying on
state measurements, it fails to satisfy R2 as well.

Moreover, in [20], the non-linear structure of H is learned by modeling (2.1) as a Gaussian Process.
Although this structure contains NFIR models as a special case (when yt is replaced with the empty
set), this is a causal model of H, since nac = 0. The case where the system is non-causal, i.e.,
when modeling H−1, is not covered in [20] and thus R1 is not satisfied. The application of this
method to feedforward control is more involved than just the inclusion of nac 6= 0, since Gaussian
Process modeling of inverse systems introduces unique difficulties on the collection of data, as will
be shown in Chapter 3.

An alternative approach to learn the non-linear structure of systems from data is used in [3, 17, 16].
Here, H−1 is assumed to be of the form

u(t) = fp(p), (2.7)

with p =
[
q̈>, q̇>, q>

]>
and q ∈ Rn a vector of generalized coordinates. This function is then

modeled as a Gaussian Process, in order to learn the non-linear structure of fp from data. By
modeling fp, this approach is capable of computing feedforward signals for multiple references in
R, such that both R3 and R4 are satisfied. However, the assumption that p is measured means
that the position, velocity and acceleration of the generalized coordinates are required, which is
in contrast with R2. This setting is more restrictive than the setting assumed in this thesis, in
which only input-output measurements are required, e.g., position measurements only. Moreover,

Gaussian Process Modeling for Non-Linear Feedforward Control with Task Flexibility 5
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[3] requires an initial inverse model Ĥ−1
prior. As will be shown in Chapter 3, for the KIMCON

method proposed in this thesis it can be sufficient to have only a prior feedback controller.

2.3 Contributions

The requirements and knowledge gap described in the previous section has led to the following
research question:

How to improve the reference tracking performance of single-input single-output systems with un-
known non-linear dynamics using input-output data while allowing for task flexibility?

The answer to this question that this thesis provides is summarized by the following contributions:

C1: This thesis proposes Kernel-based Inverse Model Control for Non-linear systems (KIMCON)
as a solution to the control problem, in which inverse systems are viewed as non-causal NFIR
systems and modeled as a Gaussian Process. This approach satisfies all requirements R1-R4
defined in the previous section, see Table 2.1.

C2: The effectiveness of the framework is demonstrated using simulations and experiments of a
range of non-linear systems.

C3: Moreover, the relation between the framework and the kernel-based identification approach
in [5] is studied.

Table 2.1: Several control techniques compared.

R1: Applicable
to non-causal
systems

R2: Uses
SISO input-
output data

R3: Allows for
task flexibility

R4: Models unknown
non-linear dynamics

ILC [11] X X
KBR [5] X X X
BFILC [27] X X X
PILCO [6] X
Pillonetto [20] X X X
CTC-GPR [3] X X X
KIMCON X X X X

6 Gaussian Process Modeling for Non-Linear Feedforward Control with Task Flexibility



Chapter 3

Kernel-based Inverse Model
Control of Non-linear systems

This chapter proposes Kernel-based Inverse Model Control of Non-linear systems (KIMCON),
constituting contribution C1. The inverse system H−1 is viewed as a non-causal non-linear finite
impulse response (NFIR) system, modeled as a Gaussian Process, in order to produce feedforward
signals for flexible tasks.

First, the identification problem of H−1 is framed as an optimization problem in Section 3.1, and
it is shown how this relates to Gaussian Process regression in Section 3.2. Section 3.3 shows how
the non-linear dynamics of unknown structure are represented by stationary covariance functions.
Subsequently, Section 3.4 describes how an appropriate data-set can be obtained, using any prior
knowledge available. The kernel hyper-parameters are then optimized based on the data, as
explained in Section 3.5. The practical implementation of KIMCON is described in Section 3.6.

The chapter concludes with a discussion about the applicability of the framework and some possible
extensions.

3.1 Definition of the optimization problem

The aim is to obtain feedforward signals uff,i to track references ri ∈ R. As shown in Section 2.1,
the inverse system H−1 is assumed to be a non-causal NFIR system in the form of (2.4). The goal
is then to find a representation of non-linear function f , such that the computation of f(x∗,t) yields
the control effort u(t) ∈ R required to produce reference sequence x∗,t = [r(t+nac), . . . , r(t−nc)]>.

To this end, f is parametrized in terms of observed output sequences xi = [y(i + nac), . . . , y(i −
nc)]

> ∈ D ∀i ∈ [1, . . . , N ] as

u(t) =: f(α | xt) =

N∑
i=1

αik (xt,xi) , (3.1)

with coefficients α := [α1, . . . , αN ]>, αi ∈ R and kernel function k (xi,xj) = 〈k (·,xi) , k (·,xj)〉K
defining the reproducing kernel Hilbert space (RKHS) K, defined as:

Definition 3.1.1 (Reproducing kernel Hilbert space [22]). Let K be a Hilbert space of real
functions f defined on an index set X . Then K is called a reproducing kernel Hilbert space
endowed with an inner product 〈·, ·〉K (and norm ‖f‖K =

√
〈f, f〉K) if there exists a function

k : X × X → R with the following properties:

1. for every x, k (x,x′) as a function of x′ belongs to K, and

Gaussian Process Modeling for Non-Linear Feedforward Control with Task Flexibility 7



CHAPTER 3. KERNEL-BASED INVERSE MODEL CONTROL OF NON-LINEAR SYSTEMS

2. k has the reproducing property 〈f(·), k(·,x)〉K = f(x). �

To find the coefficients α that best explain the data in D, we first define training matrix X and
training targets u as

X :=
[
x1 . . . xN

]> ∈ D
:=


y(nc + nac) y(nc + nac − 1) . . . y(0)

y(nc + nac + 1) y(nc + nac) . . . y(1)
...

...
...

y(N − 1 + nc + nac) y(N − 2 + nc + nac) . . . y(N − 1)

 ,
u :=

[
u(1) . . . u(N)

]> ∈ D.
(3.2)

From here on, the data-set is referred to as D = {X,u}. The following regularized least squares
problem is then proposed:

min
α

J [f ] = ‖u− f (α | X)‖22 + σ2
n‖f (α | X) ‖2K

= ‖u−Kα‖22 + σ2
n‖Kα‖2K

= ‖u−Kα‖22 + σ2
nα
>K>K−1Kα

= ‖u−Kα‖22 + σ2
nα
>Kα,

(3.3)

with f(α) := [f(x1), . . . , f(xN )]> and K shorthand for the Gramian K(X,X) = K(X,X)>, with
elements Kij = k(xi,x

′
j). It is shown in [22, Section 6.2.2] that the minimizer of (3.3) is obtained

for
α̂ =

(
K + σ2

nI
)−1

u. (3.4)

Substitution of this minimizer in (3.1) yields the predicted control effort u(t) required to track a
reference sequence x∗,t at time t:

f̂(x∗,t) = k(x∗,t)
>(K + σ2

nI)−1u, (3.5)

with k(x∗,t) = [k(x1,x∗,t), . . . , k(xN ,x∗,t)]
>. It is shown next how this result relates to Gaussian

Process regression.

3.2 Non-causal systems as a Gaussian Process

Gaussian Process regression is explained first, after which the application to identification problem
(3.3) is given.

3.2.1 Gaussian Process regression

Gaussian Processes are defined as follows.

Definition 3.2.1 (Gaussian Process [22]). A Gaussian Process is defined as an indexed family
of random variables f(x) ∈ R with x ∈ Rnθ , any finite number of which have a joint Gaussian
distribution. �

The Gaussian Process is fully specified by its mean function m(x) := E[f(x)] ∈ R and covariance
function

k (x,x′) := cov(f(x)−m(x), f(x′)−m(x′)) ∈ R, (3.6)

where x and x′ denote any two points in Rnθ . The kernel function k (x,x′) is symmetric and
positive definite, i.e., k (x,x′) = k (x′,x) and k (x,x′) ≥ 0 ∀ x,x′. From here on, the choice
m(x) = 0 is made, such that a Gaussian Process of f(x) is denoted as

f(x) ∼ GP (0, k(x,x′)) : Rnθ → R. (3.7)

8 Gaussian Process Modeling for Non-Linear Feedforward Control with Task Flexibility



CHAPTER 3. KERNEL-BASED INVERSE MODEL CONTROL OF NON-LINEAR SYSTEMS

By definition of a GP, there exists a joint distribution (u, f∗) expressed in terms of k (x,x′), where

u = [f(x1), . . . , f(xN )]> + ε (3.8)

is a vector of noisy observations in D, see (3.2), and

f∗ =
[
E[uff(0)], . . . ,E[uff(T − 1)]

]>
=
[
E[f(x∗,0)], . . . ,E[f(x∗,T−1)]

]> (3.9)

is a vector of control effort values required to produce reference sequences x∗,j , j ∈ [0, . . . , T − 1]
of reference r ∈ R of length T , grouped as

X∗ :=
[
x∗,0 . . . x∗,Ti−1

]>
:=


r(nc + nac) r(nc + nac − 1) . . . r(0)

r(nc + nac + 1) r(nc + nac) . . . r(1)
...

...
...

r(T − 1 + nc + nac) r(T − 2 + nc + nac) . . . r(T − 1)

 . (3.10)

By conditioning this joint distribution (u, f∗) on observations X and u, we obtain the posterior
p(f∗|X,u, X∗), i.e., the probability distribution of the feedforward signal f∗ required to produce
reference sequences X∗ ∈ R given the data. This step is called Gaussian Process regression and
the resulting posterior distribution is a Gaussian with mean and variance [22, Section 2.2]

E[f∗] = K (X∗, X)
[
K(X,X) + σ2

nI
]−1

u,

cov (f∗) = K (X∗, X∗)−K (X∗, X)
[
K(X,X) + σ2

nI
]−1

K (X,X∗) ,
(3.11)

where the elements of K(X∗, X) = K(X,X∗)
> ∈ RM×N , K(X,X) ∈ RN×N and K(X∗, X∗) ∈

RM×M are computed by evaluating k(x,x′) for the corresponding training inputs and test inputs.

3.2.2 System identification with a GP

When comparing solution (3.5) of optimization problem (3.3) to the posterior mean (3.11) of GP
(3.7), it occurs that these are equivalent. This is explained as follows. It is shown in [22, Section
6.2.3] that (3.5) is the maximum a posteriori (MAP) estimate of the posterior p(f(x∗) | x∗, X,u).
Since the posterior of a GP is Gaussian, the MAP equals the mean and hence (3.11) is equivalent
to (3.5).

As these results are equivalent, from here on H−1 in the non-causal NFIR form of (2.4) is viewed
as Gaussian Process (3.7), knowing that by computation of the posterior mean, the solution to the
identification problem (3.3) is obtained. The minimal example below shows NFIR systems can be
modeled as a GP.

Example 1. Let H : y(t) = 2u(t) denote the transfer function of a linear system and define
xt := [y(t)], i.e. nc = nac = 0, nθ = 1, such that H contains only one direct-feedthrough term.
We can then write H−1 as

u(t) = f(xt) =
y(t)

2
+ ε, ε ∼ N

(
0, 10−6

)
. (3.12)

Three noisy observations of f at locations xi are available, such that the training matrix is

X =
[
x1 x2 x3

]>
=
[
−3 0 3

]>
, (3.13)

with training targets

u =
[
−1.496 0.003 1.499

]>
. (3.14)
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Figure 3.1: Posterior distribution of the Gaussian Process from Example 1. The posterior mean
is close to the real function in the neighborhood of the observations.

The GP is defined with a squared exponential kernel function k(x,x′), see (3.16). The GP is
used to make predictions of f∗ at locations X∗ = [−20, . . . , 20]> by computation of (3.11). The
resulting posterior distribution is shown for each x∗ ∈ X∗ in Figure 3.1. The posterior mean is
close to the real function in the neighborhood of the data. This is the result of the choice of the
kernel function, which is discussed in more detail in Section 3.3.1. Example 6 in Appendix D.1
shows the posterior distribution in case a linear kernel function is chosen. �

3.3 Parametrization of the system: kernel selection

The approximate system Ĥ−1 is purely parametrized by the covariance function k(x,x′) in (3.1)
and hence the selection of the kernel is critical. In this section, it is explained how the presented

KIMCON approach parametrizes Ĥ−1 using stationary covariance functions, in order to model
systems with non-linear dynamics of unknown structure. Moreover, it is shown how some other
control approaches which model systems with dynamics of known structure are retrieved by se-
lecting other kernels.

3.3.1 Modeling systems with unknown structure

This section commences by defining stationary covariance functions, which can model systems with
unknown non-linear dynamics. Subsequently, some examples of stationary covariance functions
are given, representing either smooth, non-smooth, or periodic functions f(xt).

Stationary covariance functions are defined as follows.

Definition 3.3.1 (Stationary covariance function [22]). A stationary covariance function is a
function of x− x′, i.e., k(x,x′) = k(x− x′). �

If system (3.1) is parametrized in terms of a stationary covariance function, it follows that

u(t) =: f(α | xt) =

N∑
i=1

αik (xt − xi) , (3.15)
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i.e., H−1 : f(α | xt) is parametrized purely by difference from xt to observed sequences xi ∈ D.
In other words, such a model of H−1 is data-dependent. A value u(t) required to produce sequence
x∗,t is obtained by inference from measurements in Rnθ , i.e. ‘similar’ reference sequences require
‘similar’ inputs u(t).

Since stationary covariance functions lead to a data-dependent model, the collection of an appro-
priate data-set is critical. This is the topic of Section 3.4. First, the concept of smoothness in
dynamic systems is explained and three examples of stationary covariance functions are given.

Smoothness of dynamic systems

A system H−1 is considered smooth in this thesis if the function f in (2.4) has infinitely many
continuous derivatives with respect to xt. It is stressed that smoothness of H−1 relates to dynam-
ics, and says nothing about the smoothness of some reference signal r over time. For example,
the linear system H−1 : u(t) = f(xt) = θ>xt is smooth, since f has infinitely many continuous
derivatives w.r.t. xt, regardless of the sequence xt = [y(t+nac), . . . , y(t−nc)]> extracted from y,
which might display sharp variations when plotted over time.

The smoothness of the prior posed on H−1 by a kernel k(x,x′) is different for each kernel. For
smooth systems, the squared exponential (SE) is proposed, and for non-smooth systems, the
Matèrn3/2 kernel is proposed. The relation of both of these kernels to the smoothness of H−1 is
the topic of Appendix C. Therein, the ability of both SE and Matèrn3/2 kernels to represent non-
smooth systems is visualized, and it is explained that Matèrn3/2 kernels are better able to represent
non-smooth functions since they are finitely mean squared differentiable. In the remainder of this
section, the SE and Matèrn3/2 kernels are defined, along with a kernel for periodic systems.

Smooth function parametrizations

The squared exponential (SE) kernel represents smooth non-linear functions, parametrizing f(xt)
in terms of standardized Euclidian distance:

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)

>
Λ−1 (x− x′)

)
(3.16)

with hyper-parameters σ2
f = Var(f(x)) and Λ = diag([`1, . . . , `nθ ]). This kernel is able to represent

smooth systems because it is infinitely MS-differentiable, see Appendix C. Note the following limits:

lim
`τ→∞

∂k(x,x′)

∂x′τ
= σ2

f ,

lim
`τ→0

∂k(x,x′)

∂x′τ
= 0,

(3.17)

in other words, the contribution of dimension y(t + τ), τ ∈ [−nc, . . . , nac] to k(x,x′) is constant
or non-existent respectively at these limits.

Non-smooth function parametrizations

A covariance function capable of representing non-smooth non-linear functions is the Matèrn3/2

kernel, given by

k (x,x′) = σ2
f

(
1 +
√

3r
)

exp
(
−
√

3r
)
, (3.18)

with r =

√
(x− x′)

>
Λ−1 (x− x′) and Λ = diag([`21, . . . , `

2
nθ

]). Note that the lengthscales in Λ are

squared in this kernel, contrary to the lengthscales in kernel (3.16). The limits in (3.17) hold for
this kernel as well. Appendix C visualizes the prior defined by this kernel and the SE kernel, and
explains why Matèrn3/2 kernels are able to represent non-smooth non-linear systems. We continue
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with an example of a non-smooth non-linear system H−1, modeled by a GP with a Matèrn3/2

kernel.

Example 2. Consider a mass with m = 1 subject to Coulomb friction with friction coefficient
Fc = 1. The system is subject to a force u(t) and its velocity y is measured, such that the Euler-
discretized inverse dynamics, obtained by the transformation d

dt →
z−1
T with shift operator z and

sample time Ts = 0.1, become

u(t) = f(xt) =
1

Ts
(y(t+ 1)− y(t)) + sign(y(t)), (3.19)

with xt = [y(t + 1), y(t)]>, such that nac = 1 and nc = 0. An open-loop experiment (see Figure
3.2) of length N = 500 samples is done with u(t) ∼ N

(
0, 1

4

)
to form data-set D. Gaussian Process

(3.7) is trained with kernel function (3.18), and the posterior distribution for a range of test values
x∗,t = [r(t+ 1), r(t)]> is computed. The real function f(xt) for these test values and the posterior
mean are shown in Figure 3.3. The control effort u(t) is a function of samples y(t) and y(t + 1).
The non-linear sign-structure of (3.19) is seen from the ridge in the true model on the left.

By virtue of the stationary parametrization in terms of x−x′, the posterior mean E[f(x∗)] is only
accurate close to the observations in D. In other words, the GP model of H−1 has been rendered
data-dependent by the stationary covariance function. This is explained further in Section 3.4.�

Figure 3.2: A noiseless open-loop setting.

(a) The real function f(x∗). Note the non-smooth
non-linearity in the surface due to the non-linear

sign term.

(b) The posterior mean E[f(x∗)] of the GP with a
Matèrn3/2 kernel. The stationary kernel leads to a

model which is consistent with the observations and
is only able to extrapolate well close to the

observations.

Figure 3.3: The inverse system H−1 of Example 2 visualized, with observed samples shown in red.
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Periodic function parametrizations

Systems f(xt) that are periodic in dimension i of xt with period ri can be modeled [13] by the
stationary covariance function

k (x,x′) = σ2
f exp

−1

2

nθ∑
i=1

 sin
(
π
ri

(xi − x′i)
)

`i

2
 . (3.20)

What follows is an example of a function f(xt) for which this kernel may be useful.

Example 3. Let H be a pendulum such that H−1 is described by the differential equation

u = mÿ + b sin y, (3.21)

with m, b ∈ R+. The discretized system becomes

u(t) = f(xt) =
m

T 2
(y (t+ 2)− 2y (t+ 1) + y (t)) + b sin y(t), (3.22)

with xt = [y(t + 2), y(t + 1), y(t)]>, i.e., nac = 2 and nc = 0. The periodic term in (3.21) can be
modeled by kernel (3.20) with `1,2 = 0 and r3 = 1. The non-periodic terms can be modeled by
adding a different kernel, see Appendix D.3. �

3.3.2 Other parametrizations

In the proposed KIMCON approach, stationary covariance functions are used to parametrize non-
causal NFIR systems. However, to place the approach in context, Appendix D describes how other
approaches are retrieved by selecting alternative (non-stationary) covariance functions.

In Appendix D.1, it is shown how non-causal kernel-based regularization [5], described in Appendix
A, is retrieved by choosing a linear kernel function, constituting contribution C3. Moreover,
Appendix D.2 shows how Volterra systems can be represented by a particular kernel function.
Furthermore, Appendix D.3 explains how some approaches that model H as a GP combine kernels
to simultaneously identify linear and non-linear dynamics. It is explained in Appendix D.4 that
such a parametrization is not directly applicable to KIMCON, in which H−1 is modeled as a GP.

The next section explains how an appropriate data-set D can be obtained.

3.4 Data collection

It was shown in the previous section that GP (3.7) with a stationary kernel requires observations
of output sequences xt = [y(t + nac), . . . , y(t − nc)]> to be close to reference sequences x∗,t =
[r(t + nac), . . . , r(t − nc)]

> in Rnθ . However, since y is the output of system H and one can
only choose the control effort u, this poses a challenge for data collection. In this section, the
requirements on D are defined formally, and a procedure to achieve such a data-set is proposed.

3.4.1 Requirements on the data-set

Ideally, for inference from observations x ∈ D to reference sequences x∗ ∈ R with a stationary
kernel, the data-set D contains observations xi as close as possible around all reference sequences
x∗ in Rnθ . The following condition on data-set D for tasks R is proposed:

∀x∗ ∈ R ∃ B = {x1, . . . ,xb} ⊂ D, β ∈ Rb ≥ 0 | β1x1 + . . .+ βbxb = x∗,

b∑
i=1

βi = 1,

‖xi − x∗‖2 ≤ ε ∀i ∈ [1, . . . , b],

(3.23)
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i.e., each references sequence x∗ ∈ R is a combination β1x1 + . . . + βbxb = x∗ of observations
xi ∈ B ⊂ D. With

∑b
i=1 βi = 1, this means that any x∗ is enclosed by b observations xi in Rnθ .

In other words, any x∗ is a convex combination of observations xi ∈ B. The observations xi must
have sufficiently short Euclidian distance to the reference sequences x∗ in Rnθ , dictated by some
small number ε.

For ε → 0, each reference sequence x∗ is present in the data-set as an observation x = x∗. If the
output sequence x = [y(t+nac), . . . , y(t−nc)]> was observed, then also its corresponding control
effort u(t) was observed. In practice, one would be unable to obtain such a perfect data-set, since
it requires perfect knowledge of H−1 : u(t) = f(xt).

Moreover, since one only influences the control effort u(t), and observations xt follow from the
system dynamics, it is near impossible in practice to obtain observations x such that Condition
(3.23) is fully satisfied if ε is small. Therefore, the aim of data collection is to approximate
Condition (3.23) as well as possible for a value of ε which is as small as possible. The next section
describes how this is done in practice. First, an example is given of a data-set satisfying Condition
(3.23).

Example 4. Let r(t) = 1 be the reference to be tracked by the non-linear system H and
suppose nc = 0, nac = 1, such that nθ = 2. For this simple example reference, any reference
sequence is x∗,t = [r(t + 1), r(t)]> = [1, 1]>. Suppose four observations xt = [y(t + 1), y(t)]> are
available, namely, B = {[0, 0]>, [0, a]>, [a, 0]>, [a, a]>}, with a ∈ R > 1. Note that these output
sequences need not be observed in any particular order.

In this case, the goal would be to design experiments that yield these four sequences, preferably
with a → 1. For a = 1, the reference x∗,t is observed exactly and no inference is required.
Alternatively, if a < 1, the GP would need to extrapolate from the data, which yields satisfactory
results solely close to the data when using a stationary covariance function, see Figures 3.1 and
3.3.

An example output sequence containing the aforementioned observations xi, i ∈ [1, . . . , 4] with
a = 2 is

y =

x>
1 x>

3︷︸︸︷ ︷︸︸︷
[0 0 2 2 0]>︸︷︷︸ ︸︷︷︸

x>
2 x>

4

. (3.24)

Indeed, for βi = 1
4 ∀i ∈ [1, . . . , 4], Condition (3.23) holds with ε =

√
2. �

How such data-sets can be obtained is explained next.

Remark 2. It is stressed that Condition (3.23) holds exclusively for stationary covariance func-
tions. Linear covariance functions, while capable only of representing linear systems, allow for
extrapolation in Rnθ far from observations, see Appendix D.1. Moreover, for periodic covariance
functions, Condition (3.23) can be adapted to include the periodicity in f in order not to be too
conservative. �

3.4.2 Procedure

To design experiments that lead to observations y which are similar to r in Rnθ , the closed-loop
setting in Figure 2.2 is used. A summary of the required steps is given first, before elaborating
each point in the sections below.

The procedure to obtain D is summarized as follows:

1. Obtain a stabilizing feedback controller C(z) for H.

2. Obtain an initial approximate model Ĥ−1
prior using any technique available.
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3. Design excitation references R̃ := {r̃1, . . . , r̃nR̃} with r̃i = [r̃(0), . . . , r̃(T̃i−1)]>∀i ∈ [1, . . . , nR̃],

where T̃i denotes the number of samples in excitation reference r̃i. When these excitation
references are applied to the closed-loop system, sequences xi ∈ X, ∀i ∈ [1, . . . , N ] (see
(3.2)) should be observed that approximate Condition (3.23), i.e., enclosing each x∗ in R.

4. Format the data to obtain D = {X,u}.

The following sections further elaborate on these steps.

Feedback design

Feedback can be used to obtain outputs y similar to r in Rnθ . Any feedback design technique can
be used to design C(z). Since H may be non-linear, special attention should be paid to assure
that the output y remains bounded.

In closed-loop, measurement noise ε affecting u leads to u and y being correlated by feedback.

This introduces a bias when estimating Ĥ−1 from u and y. To reduce this bias, one can repeat
each experiment an additional time with the same control effort. By including the results from
both experiments, an average is obtained.

Inclusion of an approximate model

The initial model Ĥ−1
prior should be as accurate as possible, since a more accurate model causes

observations y to be closer to the excitation references in R̃. The user can then focus on the
design of R̃ such that when applied to the closed-loop system, the discrepancy between r̃i and

yi is a result of only unknown dynamics not modeled by Ĥ−1
prior, e.g., non-linear dynamics or

higher order linear dynamics.

Excitation reference design

The excitation references leading to observations y allowing for inference to r ∈ R in Rnθ depend
heavily on R. Since H−1 is unknown, this process may involve trial-and-error. Some examples of
R̃ include:

1. Periodic references with varying frequencies.

2. Scaled variations of the references R.

Practical examples of excitation references are shown in Chapters 4 and 5.

Construction of the data-set

The designed excitation references r̃i are used in nR̃ closed-loop experiments in the setting of Figure

2.2, yielding outputs yi = [y(0), . . . , y(T̃i−1)]> and control efforts ui = [u(0), . . . , u(T̃i−1)]>, i ∈
[1, . . . , nR̃]. The resulting nR̃ vectors of data are stacked as

y = [y>1 , . . . ,y
>
nR̃

]>,

u = [u>1 , . . . ,u
>
nR̃

]>.
(3.25)

The training matrix X and training targets u are constructed by substituting (3.25) in (3.2), such
that the total number of samples is N =

∑nR̃
i=1 Ti (see Example 4).

Remark 3. Note that the ordering of the rows in X and u is irrelevant, as long as each training
input xt = [y(t + nac), . . . , y(t), . . . , y(t − nc)]> ∈ X is aligned with the corresponding training
target u(t) ∈ u. This allows for the stacking of data in (3.25). �

As shown in the next section, the training time of the GP heavily relies on the number of samples
N . Optionally, to reduce the size of the data-set, rows can be removed from X and u. Indeed,
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physical systems with high sample-rates exhibit y(t+1) ≈ y(t). Consequently, xt+1 ≈ xt and thus
one of these samples adds little extra information. Therefore, to save computational time it may
be desirable to take into account only every ns ∈ N rows of X and u to form D and discard all
other rows.

3.5 Optimization of hyper-parameters

The kernels mentioned in Section 3.3 all contain a number of hyper-parameters Θ, such as char-
acteristic lengthscales `i, σn and σf . These can be chosen from expert knowledge or found by
maximization of the marginal likelihood, sometimes referred to as evidence maximization. The
marginal likelihood can be interpreted as the probability of the observed data given the model.
For numerical reasons, the log of the marginal likelihood is considered [22, Section 5.4], defined as

log p(u | X,Θ) = −1

2
u>K−1

n u− 1

2
log |Kn| −

n

2
log 2π, (3.26)

with Kn = K + σ2
nI and |Kn| := det(Kn). To find maximizer Θ̂ of the non-convex reward (3.26),

active-set optimization [19, Section 7.4] is used. This requires the computation of the gradient

∂

∂Θj
log p(u | X,Θ) =

1

2
u>K−1

n

∂Kn

∂Θj
K−1
n u− 1

2
tr

(
K−1
n

∂Kn

∂Θj

)
=

1

2
tr

((
αα> −K−1

n

) ∂Kn

∂Θj

)
,

(3.27)

where α = K−1
n u. This gradient needs to be computed with respect to each hyper-parameter Θj .

Remark 4. Since the stationary covariance functions used in KIMCON (see Section 3.3.1) con-
tain a hyper-parameter `i for each nθ = nac + 1 + nc dimensions in x, the required number of
computations for hyper-parameter optimization grows with nθ. The computational complexity of
the inversion of Kn is O(N3). The computation of the gradients (3.27) involves another O(N2)
computations per hyper-parameter [22, Section 5.4]. For, e.g., the SE kernel (3.16), the total com-

plexity for the computation of the marginal likelihood and gradients thus is O(N
3

+N
2
(nθ + 2)),

where the extra 2 hyper-parameters are σn and σf . Here, N denotes the length of the active
set, i.e. a subset of X and u used for optimization. Since active-set optimization requires the
computation of these gradients at every iteration, optimization of hyper-parameters can be time
consuming for large data-sets. For example, the experiments of Chapters 4 and 5 require up to 36
hours of training1. �

3.6 Implementation

The presented KIMCON approach is summarized in Algorithm 1. While any suitable software
package may be employed to implement the approach, in this thesis the MATLAB Statistics and
Machine Learning Toolbox [15] is used. Several implementation aspects of KIMCON will be
clarified next. A full example of the implementation of KIMCON is given in Appendix F, where
the MATLAB code of the example in Section 4.1 is included.

3.6.1 Gaussian Process regression in MATLAB

To train the Gaussian Process, Line 8 of Algorithm 1 is executed using the fitrgp function from
the aforementioned MATLAB toolbox. To compute the posterior mean in Line 11, the predict

function of the same toolbox is used.
1All computations in this thesis are carried out on a desktop PC with a quad-core Intel i7 3.4 GHz processor

and 16GB of RAM.
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Remark 5. If using the fitrgp function in MATLAB R2020a, the user should manually disable
the use of basis functions and choose a kernel with the ard prefix to ensure that each dimension i of
x admits a separate lengthscale `i. Counter-intuitively, when using the ardsquaredexponential

kernel (3.16) or ardmatern32 kernel (3.16), hyper-parameters `i, σn and σf are optimized even if
the OptimizeHyperparameters parameter is disabled. �

3.6.2 Assessment of the data-set

Verifying whether each x∗,t ∈ R is enclosed by observations xi ∈ D in Rnθ in Condition (3.23) can
be done in several ways. The direct assessment of Condition (3.23) could be done by applying a
k-nearest neighbors algorithm [24] to each x∗,t ∈ R to find B and numerically verify the condition
for some user-specified value of ε.

However, such a direct assessment of Condition (3.23) is computationally expensive. Moreover, the
condition needs only to be approximately met for inference to R from D. For smooth references,
such as the ones used in Chapters 4 and 5, a quantitative assessment of Condition (3.23) may not
be required. Rather, from practical experience it appears that in many cases it suffices to visually
assess the similarity of signals yi, i ∈ [1, . . . , nR̃] and rj , j ∈ [1, . . . , nR]. The user should be
aware that similarity in nθ is key, i.e., when nθ grows large, it becomes increasingly difficult to
visually assess the quality of the data-set.

Moreover, it is important to note that sequences xt = [y(t+ nac), . . . , y(t− nc)]> extracted from
observations yi, i ∈ [1, . . . , nR̃] are time-invariant: the t in these terms serves as nothing more
than a label to match the observation xt with control effort u(t), see (2.4). This should be taken
into consideration when assessing similarity between yi and rj over time. See also Figure 4.4,
where observations yi with negative slope around t = 60 [s] yield sequences xt that contribute to
the model when computing the posterior mean for the reference r around t = 30 [s].

Algorithm 1: Kernel-based Inverse Model Control of Non-linear systems (KIMCON)

Result: A feedforward signal uff,i ∈ RTi for each reference ri ∈ R.

Input: References R, initial model Ĥ−1
prior, feedback controller C.

1 Choose a stationary kernel k(x,x′) based on the smoothness and periodicity of H−1, see
Section 3.3;

2 while Condition (3.23) not approximately satisfied do

3 Design nR̃ excitation references R̃, see Section 3.4;

4 Perform nR̃ closed-loop experiments with R̃ using Ĥ−1
prior and C, resulting in N

observations of xt and u(t);
5 Assess Condition (3.23);

6 end
7 Format the data-set to obtain D = {X,u};
8 Maximize the log marginal likelihood (3.26) to obtain kernel hyper-parameters Θ;
9 for each reference ri ∈ R do
10 Format ri as X∗, see (3.10);
11 Compute the posterior mean uff,i = E[f∗] with (3.11);

12 end
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3.7 Discussion

This section describes the applicability of KIMCON and gives some opportunities for improvement.

3.7.1 Applicability

KIMCON was developed to produce feedforward signals for systems with non-linear dynamics of
unknown structure and task flexibility. Within this class of problems, the technique works better
for some subclasses than for others. Deciding factors are the types of references to be tracked and
the nature of the non-linear dynamics.

Shape of the reference

The approach is easiest to implement with smooth references R, as will be shown in Chapters
4 and 5. With only limited prior knowledge (e.g., only a feedback controller), a data-set can be
obtained that allows for inference of observations to the smooth reference using the procedure
described in Section 3.4. However, when the shape of the reference is more complex, it becomes
increasingly difficult to obtain such a data-set.

Task flexibility

While KIMCON does allow for task flexibility, it is imperative that the reference sequences x∗,t

are close to the observed sequences xi, because the model Ĥ−1 is data-dependent. As a result,
task flexibility is limited to reference paths similar to paths observed during training. This is the
price paid for the fact that no non-linear basis functions are required. In contrast, techniques such
as BFILC can extrapolate to arbitrary references because the coefficients of user-specified non-
linear basis functions are learned. When a good representation of the non-linear basis functions
is available, BFILC may be preferred.

Fading memory

Furthermore, stationary kernels described in Section 3.3 represent a large range of non-linear
functions, however, by parametrizing H−1 as a non-causal NFIR system, only systems with fading
memory can be modeled [23]. Such systems rely on only a finite number of preview samples and
delayed samples to determine the next system state. In contrast, inverse systems H−1 containing
bifurcations, jumps, or moving resonances would require an infinite history (or memory) to de-
termine the next system state. Such systems would require a non-linear infinite impulse response
(NIIR) parametrization and are outside the scope of KIMCON.

3.7.2 Extensions

The following extensions of KIMCON may further increase its practical applicability in the future.

Iterative data-collection

As the performance of KIMCON is largely dependent on the distance between observed sequences

x and reference sequences x∗, any prior knowledge Ĥ−1
prior that can be used during data collection

can be of use. Since KIMCON yields an estimate Ĥ−1 given Ĥ−1
prior, it may be worth investigating

if an iterative procedure may increase its performance. For example, by setting Dj+1 = Dj ∪
Ĥ−1

jR̃ after each iteration j and training a new GP. Initial experiments of this kind have yielded
no satisfactory results, but it may deserve more attention in the future.
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Computational speed

The computational complexity of training a Gaussian Process is significant, as shown in Section
3.5. The results in Chapters 4 and 5 require up to several dozen hours of training, which can
hamper development speed in practical situations. Therefore, it is worth researching whether the
sparse Gaussian Process methods in [12, 26] are applicable to KIMCON.

Noise on the output

A Gaussian Process is typically defined for the case when noisy observations of f(x) are available.
Since KIMCON models H−1 as a GP, this introduces the assumption of noise ε(t) on u(t), as
shown in Figure 2.2. Many physical systems, however, also exhibit noise on y(t). To deal with
this noise, the approaches proposed in [22, Section 9.5] might be employed.
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Chapter 4

Numerical validation

In this chapter, two numerical examples are presented to demonstrate the presented KIMCON
approach, constituting contribution C2. First, to show how the non-linear structure of a system
can be completely inferred from data using a GP, a Wiener system is considered. Moreover, the
approach is applied to a simulation of a wire-bonder, to demonstrate how a small number of simple
experiments per task can lead to a noticeable reduction in the tracking error.

4.1 Feedforward control of a Wiener system

This section describes the application of the presented KIMCON approach to a Wiener system,
defined as:

Definition 4.1.1 (Wiener system). A Wiener system is defined as the cascade of a dynamic linear
system followed by a static non-linear system. �

See Figure 4.1 for a visual representation. The inverse of a Wiener system is a Hammerstein
system:

Definition 4.1.2 (Hammerstein system). A Hammerstein system is defined as the cascade of a
dynamic linear system preceded by a static non-linear system. �

Figure 4.1: A cascade of systems H1 and H2. If H1 is a dynamic linear system and H2 is static
non-linear system, H is a Wiener system. Conversely, if H1 is a static non-linear system and H2

is a dynamic linear system, H is a Hammerstein system.

By assuming merely sufficient knowledge of the linear component of the Wiener system to design a
feedback controller, the procedure is shown to be able to model the unknown non-linear dynamics
well around a given reference.
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Figure 4.2: Impulse response coefficients of the linear system P−1(z), with nc = nac = 300. It it
clearly visible that P−1(z) is non-causal, since the impulse at time τ = 0 leads to a response at
τ < 0.

Setting and goal

Consider the linear example system from [5]:

P (z) :=
ỹ(z)

u(z)
=

1.550
(
z2 − 2.035z + 1.052

) (
z2 − 1.844z + 0.9391

)
z2(z − 0.9514)(z − 0.9511)

(4.1)

which has two NMP zeros at 1.018 ± 0.126i and two minimum-phase zeros at 0.922 ± 0.298i. In
[5], the linear system P−1(z) is approximated as a non-causal FIR system with nc = nac = 300,
such that the function

fP (xt) = θ̂>xt, (4.2)

with xt = [y(t + nac), . . . , y(t − nc)]>, defines the FIR approximation P̂−1. Here, θ̂ ∈ Rnθ are
the impulse response coefficients, see also Appendix A. These impulse response coefficients are
depicted in Figure 4.2.

In this example, the output of P (z) is fed through a static non-linear function such that y(t) =√
|ỹ(t)|, see Figure 4.3. Consequently, the system H to be controlled is a Wiener system, described

by
y(t) =

√
|P (q) (u(t)− ε(t)) |, (4.3)

with noise signal ε(t) ∼ N (0, σ2
n), σn = 10−3 acting on the input of H and q the forward shift

operator such that qτa(t) := a(t + τ), a ∈ R. The inverse system H−1 is then defined as the
following Hammerstein system:

u(t) =: f(xt) + ε(t) = P−1(q) (y(t))
2

+ ε(t). (4.4)

Since the non-linear square term in f(xt) is static, i.e., not a function of q, it follows that f(xt)

can be rewritten as a combination of the impulse response coefficients θ̂ of P̂−1:

u(t) =: f(xt) = θ̂> (xt � xt) + ε(t), (4.5)

where � denotes element-wise multiplication. The assumption that the NFIR function f(xt) in
(4.5) is a valid parametrization of H−1 then follows naturally from the assumption that the FIR
function fP (xt) in (4.2) is a valid parametrization of P−1, as shown in Appendix A.

The goal is to track a single reference:

r(t) =

{
0.5 cos( 2π

40 t) + 1 20 < t < 60

1.5 otherwise,
(4.6)

with discrete-time representation r = [r(0), . . . , r(T − 1)]> ∈ RT , where T = 1500, with sample
time Ts = 1

20 [s]. This reference is to be tracked using the closed-loop scheme of Figure 4.3.
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Figure 4.3: Control scheme of the Wiener example.

Approach

Following the approach described in Algorithm 1, a system parametrization is selected first. As-
suming that the non-linear dynamics of H−1 are smooth (as defined in Section 3.3.1), the SE
kernel (3.16) is chosen.

A dataset D is collected by performing nR̃ = 20 closed-loop experiments with linear controller

C(z) =
0.09688z2 + 0.001974z − 0.0929

z3 − 2.844z2 + 2.783z − 0.9391
, (4.7)

which was tuned with knowledge of the linear system P (z). The excitation references R̃ are chosen
as

r̃i(t) = 1− 0.5 cos(2π
3bi
100

t− π) ∈ R̃, bi ∈ [0.3, . . . , 1.5], (4.8)

where i ∈ [1, . . . , nR̃] and each experiment yields Ti = 1200 samples. During these experiments,

no approximate model Ĥ−1
prior was used. These references R̃ are shaped as to produce closed-

loop outputs yi = [yi(0), . . . , yi(Ti − 1)]> resembling r, see Figure 4.4. They are similar in the
sense that the sequences xj extracted from yi(t) have short Euclidian distance to x∗,j in Rnθ , see
Sections 3.4.1 and 3.6.2, with nc = nac = 300 such that nθ = 601.

0 20 40 60

0

0.5

1

1.5

Figure 4.4: Reference to be tracked, compared to observed outputs. Note that the outputs are
shifted in time in the figure to show that indeed, these may allow for inference to the reference in
Rnθ .

The measurements are formatted using (3.2) to obtain X and u. To reduce the size of the data-
set, only every one in ns = 40 rows of X and u is taken into account. The resulting data-set
D = {X,u} contains N = 300 observations (or rows).

Gaussian Process (3.7) is then trained with D and SE kernel (3.16), and hyper-parameters σf , σn
and `i in Λ = diag([`1, . . . , `nθ ]) are found by maximizing the marginal likelihood, as described
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in Section 3.5. This required roughly 6 minutes of training. The computational time required
for the synthesis of the feedforward signal with (3.11) is in the order of seconds, since the matrix
(K + σ2

nI)−1 is stored after training, i.e., no matrix inversion is required for predictions.

Appendix F includes the MATLAB code of this example.

Results

The resulting feedforward signal is shown in Figure 4.5. The feedforward signal produced by
KIMCON resembles the perfect feedforward signal obtained by stable inversion of P (z). These
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2.5

Figure 4.5: Feedforward signals generated by different techniques. For the black and green lines,
stable inversion of the true system was used. The red feedforward signal produced by KIMCON
closely resembles the true inverse system in green.

feedforward signals are applied in closed-loop with reference r and the resulting error is shown
in Figure 4.6, magnified in Figure 4.7. The feedforward signal produced by KIMCON leads to a
similar tracking error as the perfect inverse model feedforward signal in green. This shows that
with minimal expert knowledge, i.e., only a feedback controller tuned with knowledge of the linear
system, KIMCON learned the non-linear structure of H−1 from data.
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Figure 4.6: Closed-loop tracking error for different feedforward signals. The red error profile
resulting from KIMCON is almost as small as the green error profile resulting from stable inversion
of the real non-linear system.
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Figure 4.7: Closed-loop tracking error for different feedforward signals, zoomed in. The red error
profile resulting from KIMCON is almost as small as the green error profile resulting from stable
inversion of the real non-linear system.
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4.2 Feedforward control of a non-linear wire-bonder system

In this section, the presented KIMCON approach is applied to a simulation of a wire-bonder
system from ASM-PT [2]. A setting is assumed in which a feedback controller C(z) and a lin-

ear approximation Ĥ−1
prior are available. The non-linear dynamics of H−1 are learned using

KIMCON.

Setting and goal

The system H to be controlled is a 6-DOF mass system with reaction forces and high order
dynamics, simulated by a proprietary Simscape Multibody [14] model. Details of the dynamics are
omitted for confidentiality reasons, however, these are not necessary to understand the performance
increase that KIMCON accomplishes.

The only knowledge of H−1 assumed in this section is that the dynamics are non-linear and

smooth. The available simulation models of H, Ĥ−1
prior and C are treated as black-box models

to show that it is sufficient for KIMCON to have some prior control scheme, even if no details of
the control scheme are available.

The goal is to let H track some reference r, depicted in Figure 4.8. With the existing model

Ĥ−1
prior, a feedforward signal uff is constructed, leading to some closed-loop error ‖e‖2,nominal

1.
The goal is to reduce the norm of this error as much as possible with KIMCON.

Approach

With an initial model Ĥ−1
prior available, as well as a feedback controller, the focus is on the choice

of kernel function and excitation reference design.

The kernel function is chosen as the squared-exponential kernel (3.16) since f(xt) is assumed to
be smooth (i.e., it does not contain non-smooth terms such as a sign-function). For the data
collection, nR̃ = 7 excitation references are defined:

r̃i = air, ai ∈ [0.985, 0.990, . . . , 1.015], i ∈ [1, . . . , nR̃]. (4.9)

The resulting observations are shown in Figure 4.8. Gaussian Process (3.7) is trained with the
data-set D resulting from these 7 experiments as described in Section 3.4, with nac = 200 and
nc = 15. Only every second sample in D was taken into to reduce the size of the data-set (i.e.
ns = 2), resulting in N = 4851. The kernel hyper-parameters σn, σf and `j , j ∈ [1, . . . , nθ] are
obtained by active-set optimization of the marginal likelihood with N = 2000 the size of the active
set, see Section 3.5. This required roughly 36 hours of computational time.

Results

The posterior mean (3.11) of the feedforward signal is compared to the original feedforward signal
in Figure 4.9. The oscillations of the feedforward signal produced by KIMCON, visible in the mag-
nified box, span exactly the preview window of nac = 200 samples, functioning as pre-actuation.
When applied to the closed-loop system, the effect of this pre-actuation is clearly visible, see Fig-
ure 4.10. Although the pre-actuation signal leads to a nonzero error before the reference starts
(at t = 300), the error is reduced significantly until t = 420, when the reference has reached its
peak value. The same effect is observed when the system moves back to its initial position.

The non-zero error between t = 0 and t = 120 results from the fact that the GP has not inferred
from the data that standing still requires zero feedforward. This could be resolved by including
more observations around x∗ = 0 in D, e.g., by applying white noise to the system when it is at
y = 0.

1Exact numbers have been redacted for confidentiality reasons, all values in this section are normalized.
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Figure 4.8: Original reference r and observed closed-loop output of the wire-bonder using excita-
tion references r̃i.

With the GP-based feedforward signal, the norm of the closed-loop error ‖e‖2,GP is 9% lower than
‖e‖2,nominal. Given that only seven simple experiments were carried out for data collection and a
general-purpose SE kernel was used without the assumption of any additional expert knowledge,
this is a considerable improvement.
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Figure 4.9: Posterior mean of the feedforward signal compared to the original feedforward signal.
The black box on the left marks the zoomed in region on top, showing the pre-actuation behavior
of KIMCON.
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Figure 4.10: Closed-loop tracking error using the original feedforward signal and the KIMCON
feedforward signal. The latter leads to an 9% reduction in the 2-norm of the error, as a consequence
of the pre-actuation behaviour learned by KIMCON.



Chapter 5

Experimental results

In this chapter, KIMCON is applied to a commercial desktop A3 printer subject to non-linear
friction, constituting contribution C2. It is shown that if the non-linear dynamics are unknown,
the proposed approach leads to better tracking performance for flexible tasks than linear methods.

5.1 Setting and goal

An A3 printer (see Figure 5.1) is set up with a real-time platform such that control effort u(t)
in [V] can be applied and position y(t) in [m] can be read at a sample rate of 1000 Hz. First,
the control objective is formulated. Subsequently, the prior knowledge is listed and a non-linear
model for the purpose of validation is given.

Figure 5.1: The A3 printer used in this experiment.

Goal

The aim is to track two third-order references R = {r1, r2}, depicted in Figure 5.3, using the
closed-loop control scheme in Figure 2.2. More specifically, the goal is to reduce the tracking error
‖ei‖2, i ∈ [1, 2] of r1 and r2 as much as possible using KIMCON.
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Figure 5.2: Bode plot of Ĥ(z).

Prior knowledge

The available prior knowledge is as follows. An approximate linear model of the printer H is
available:

Ĥ(z) = 10−8 3.399z4 + 106.2z3 + 142.2z2 − 8.806z − 1.882

z7 − 3.666z6 + 5.218z5 − 3.438z4 + 0.8857z3
, (5.1)

shown visually in Figure 5.2. A feedback controller C(z) is available as well, given by

C(z) =
108.6z3 + 112.9z2 − 100z − 104.3

z3 − 0.6499z2 − 0.9465z + 0.7035
. (5.2)

Moreover, a prior model Ĥ−1
a,v is given:

Ĥ−1
a,v : uff = Ψ1(r)v

= [r̈, ṙ]

[
v1

v2

]
.

(5.3)

Coefficients v1 = 0.0830 and v2 = 2.8531 corresponding to the basis functions in Ψ1 are learned by
10 trials of BFILC using reference r1 and weights We = I, Wf = 0 and W∆f = 0, see Appendix
B. Note that this prior model includes no information about non-linear dynamics.

Validation

In reality, the print-head is subject a significant amount of (location-dependent) static friction.
These non-linear dynamics are considered to be unknown during training. For the sole purpose of

validation, however, a non-linear model Ĥ−1
a,v,sign that approximates these non-linear dynamics

is taken into account:
Ĥ−1

a,v,sign : uff = Ψ2(r)v

= [r̈, ṙ, sign(ṙ)]

v1

v2

v3

 , (5.4)

where coefficients v1 = 0.0955, v2 = 0.5643 and v3 = 1.0574 are learned using BFILC with the
same settings as before. Note that v1 6= v1, v2 6= v2 because the basis functions in Ψ2 are not
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orthogonal, see Appendix B. Indeed, as will be shown in Section 5.3, the inclusion of this non-linear
basis function, if known to the user, would lead to a factor 7 reduction in ‖e1‖2 with respect to

the linear model Ĥ−1
a,v. This confirms that H−1 is non-linear to a significant extent.

5.2 Approach

Following the approach in Chapter 3, a system parametrization is specified first. The model Ĥ−1

is parametrized in terms of the data using a stationary covariance function. In particular, the
Matèrn3/2 kernel (3.18) is chosen, for its ability to represent non-smooth functions, which suits
the static friction observed in the system.

Next, a data-set is to be collected using the prior knowledge available. To represent a situation in
which no information of the non-linear dynamcs is available, the linear inverse model (5.3) is used
for training, with feedback controller C(z) in the setting of Figure 2.2. The excitation references
are simply chosen as

R̃ : r̃i = air1, i ∈ [0.90, 0.92, . . . , 1.10]. (5.5)

Note that this leads to nR̃ = 11 experiments, one of which with r̃6 = r1 ∈ R, i.e., the reference
r1 to be tracked is used during training. However, r2 ∈ R is not used during training and thus it
can be used to assess KIMCON’s ability to deal with task flexibility. The references r1 and r2 are
compared with the observed closed-loop output in Figure 5.3.
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Figure 5.3: References r1, r2 ∈ R and observed outputs yi ∈ D resulting from nR̃ = 11 closed-loop

experiments with excitation references R̃, see (5.5).

With these observations of y and u, data-set D = {X,u} is formed with nac = 40 and nc = 20
as described in Section 3.4. To reduce the size of the data-set, only every one in ns = 30 rows
of X and u is taken into account, leaving N = 2970 samples (or rows). Subsequently, Gaussian
Process (3.7) is trained with D and kernel (3.18), after which the kernel hyper-parameters are
optimized by active-set maximization of the marginal likelihood (see Section 3.5) with active-set
size N = 2000. This required roughly 90 minutes of computational time.

5.3 Tracking performance

The feedforward signals produced by the three inverse models are compared in Figure 5.4. The

feedforward signal generated by KIMCON is considerably different from Ĥ−1
a,vr1, even though
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KIMCON used Ĥ−1
a,v for data-collection. This indicates that KIMCON has at least learned

dynamics not present in Ĥ−1
a,v, possibly non-linear dynamics.
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Figure 5.4: Feedforward signals generated by BFILC witout a sign-term (Ĥ−1
a,v), with a sign

term (Ĥ−1
a,v,sign) and by KIMCON (Ĥ−1

GP), for reference r1 ∈ R̃, i.e., a reference that is used
during training.
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Figure 5.5: Closed-loop error e1 = r1 − y1 using feedforward from BFILC witout a sign-term

(Ĥ−1
a,v), with a sign term (Ĥ−1

a,v,sign) and from KIMCON (Ĥ−1
GP). While expert knowledge

of the sign term leads to the smallest error, KIMCON is superior if this prior is unavailable, with

a factor 2.5 reduction in ‖e1‖2 compared to Ĥ−1
a,v.

The resulting closed-loop error for r1 is shown in Figure 5.5. The effect of the feedforward signal

produced by KIMCON is most visible at its resting position at t = 2 [s]. Whereas with Ĥ−1
a,v

the print-head stops 4 [mm] off from its desired position since C(z) contains no integrator, both
KIMCON and BFILC with the sign-term stop close to zero. Since the only difference between the
blue and the green plot in Figure 5.4 is the sign-term, the correct resting position is presumably the
result of the spike in control effort just before t = 2 [s]. The need for such a spike in force, although
applied slightly earlier (around t = 1.9 [s]), is learned from input-output data by KIMCON.
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Table 5.1 displays the 2-norm and peak of the tracking errors of the three approaches. While the
best performance is achieved with knowledge of the non-linear sign term, KIMCON far outperforms
BFILC if the non-linear basis function is unknown by modeling the non-linear dynamics from data.
With only nR̃ = 11 simple experiments and a general-purpose kernel, KIMCON leads to a factor
2.5 reduction in the 2-norm of the error.

5.4 Tracking performance with flexible tasks

Lastly, the ability of KIMCON to deal with task flexibility is demonstrated. To this end, the same
GP, trained using R̃, is used to compute a feedforward signal for r2 = 1.05r1 /∈ R̃, see Figure 5.6.
The resulting error profile is shown in Figure 5.7, where similar results are seen as before: while
knowledge of the sign-term leads to the best performance, KIMCON outperforms BFILC when
the non-linear component of H−1 is unknown, even when extrapolating to a reference not used in
training. The 2-norm and peak of the tracking errors are shown in Table 5.1. With a factor 1.9
reduction in the 2-norm compared to BFILC without knowledge of the non-linear sign-term, this
confirms that KIMCON can be well suited to produce feedforward signals for flexible tasks.
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Figure 5.6: Feedforward signals generated by BFILC witout a sign-term (Ĥ−1
a,v), with a sign

term (Ĥ−1
a,v,sign) and by KIMCON (Ĥ−1

GP), for reference r2 /∈ R̃, i.e., r2 is not used during
training.

Table 5.1: Closed-loop tracking errors using different feedforward signals.

With reference r1 ∈ R̃ With flexible reference r2 /∈ R̃
BFILC: ‖ea,v‖2 170 [mm] 164 [mm]
BFILC: ‖ea,v,sign‖2 23 [mm] 46 [mm]
KIMCON: ‖eGP‖2 68 [mm] 86 [mm]

BFILC: max(|ea,v|) 5.6 [mm] 4.2 [mm]
BFILC: max(|ea,v,sign|) 1.1 [mm] 1.2 [mm]
KIMCON: max(|eGP|) 3.2 [mm] 3.6 [mm]
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Figure 5.7: Closed-loop error e2 = r2 − y2 using feedforward from BFILC witout a sign-term

(Ĥ−1
a,v), with a sign term (Ĥ−1

a,v,sign) and from KIMCON (Ĥ−1
GP), for a reference not in the

training data. While expert knowledge of the sign term leads to the smallest error, KIMCON is
superior if this prior is unavailable, with a factor 1.9 reduction in ‖e2‖2. Evidently, KIMCON
leads to relatively small tracking errors even when extrapolating from the training data.



Chapter 6

Conclusions

Conclusions

With the developed Kernel-based Inverse Model Control for Non-linear systems (KIMCON) ap-
proach, it has become possible to produce feedforward signals for systems with non-linear dynam-
ics of unknown structure while allowing for task flexibility. By modeling the inverse system as
a Gaussian Process, parametrized as a non-causal non-linear finite impulse response (NFIR) sys-
tem, non-linear dynamics of unknown structure are learned from input-output data. It was shown
numerically and experimentally that by selection of some suitable stationary kernel function and
experimental design, feedforward signals are obtained that significantly improve the performance
of systems.

Since the technique relies on inference of observed output sequences to reference sequences, the
main applications for this technique are systems with non-linear dynamics of unknown structure
for which at least some prior control strategy is available, e.g., a feedback controller or a decent
feedforward controller. This renders it feasible to design the necessary experiments that lead
to observations allowing for inference to different references. Examples covered in this thesis
are Wiener systems of which only the linear part is known, non-linear systems of which only a
simplified linear model is available, and systems experiencing location-dependent friction. In each
of these case studies, KIMCON led to a considerable performance increase, with up to a factor
2.5 reduction in the 2-norm of the error on an experimental setup compared to linear methods.

Future work

Several directions for future work are proposed. First, it would be interesting to see how the
performance could be improved if the Gaussian Process is not trained with the raw output y, but
with filtered outputs. For example, for systems where the non-linearity presents itself in the nth
derivative of y, the approximate nth derivative of r and measurements y could be used for training.
Other filters used for this purpose are Laguerre and Kautz filters [29, 30], the application of which
to KIMCON could be worth researching.

Moreover, the presented KIMCON approach could be extended to feedforward control of multi-
input multi-output (MIMO) systems. This is done for causal state-transition models in [6] by
viewing each output dimension as a conditionally independent MISO system and modeling each
of these as a Gaussian Process. A similar approach could be taken to extend KIMCON to MIMO
systems.
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Appendix A

Kernel-based regularization

The KIMCON approach presented in Chapter 3 is closely related to kernel-based identification of
non-causal systems [5]. This technique will be explained next.

A.1 System parametrization

Consider the linear discrete-time single-input single-output (SISO) non-minimum phase plant
H(z). The inverse system H−1(z) can be exactly expressed as the infinite two-sided formal Laurent
series

H−1(z) =

∞∑
τ=−∞

θoτz
−τ , (A.1)

which is of non-causal infinite impulse response (IIR) structure. It was shown in [5] that the signal

u(t) =

∞∑
τ=−∞

θoτrt−τ (A.2)

leads to exact inversion y(t) = H(z)u(t) = r(t), i.e., open-loop inverse model feedforward. Altern-
atively, consider the finite-dimensional truncation of (A.1):

u(t) =

nc∑
τ=−nac

θ̂τrt−τ . (A.3)

Here, nac represents the number of preview samples, and nc the number of delayed samples. This
parametrization of H−1 is a finite impulse response (FIR) structure. The next section explains

how to obtain θ̂.

A.2 System identification of non-causal systems

In [5], θ̂ is obtained from data as follows. Given a data-set of input-output data D = {ut, yt}Nt=1,
the following optimization problem is considered:

θ̂ = arg min
θ∈H

N∑
t=1

(
ut −

∞∑
τ=−∞

θτyt−τ

)2

+ σ2
n‖θ‖2H. (A.4)

Here, θ ∈ H indicates that the impulse response coefficients are restricted to a reproducing kernel
Hilbert space (RKHS) H, see Definition 3.1.1. This restriction allows for a finite-dimensional
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reformulation of (A.4) [21, Section 10.1], by imposing the FIR structure (A.3) on H−1. The
optimization problem then becomes

θ̂ = arg min
θ
‖u− ΦNθ‖2 + σ2

nθ
TΠ−1θ

= ΠΦTN
(
ΦNΠΦTN + σ2

nI
)−1

u,

(A.5)

where θ ∈ Rnθ are the coefficients of the function u = ΦNθ + E, Ei ∼ N
(
0, σ2

n

)
. The regressor

matrix ΦN ∈ RN×nθ is defined as

ΦN =


y(nac) y(nac − 1) . . . y(−nc)

y(nac + 1) y(nac) . . . y(−nc + 1)
...

...
...

y(N − 1 + nac) y(N − 2 + nac) . . . y(N − nc − 1)

 , (A.6)

where it is assumed that y(N + i) = y(−i) = 0 ∀ i ∈ N. The Gramian Π ∈ Rnθ×nθ with
nθ = nac + 1 + nc is obtained from Πij = k(ti, t

′
j), where k(ti, t

′
j) specifies the covariance between

two impulse response coefficients, i.e., a non-causal prior on θ. See [5] for a number of non-causal
kernels.
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Appendix B

ILC with basis functions

In this appendix, Iterative Learning Control with basis functions (BFILC) [27] is explained, for
the purpose of understanding how models of non-linear inverse systems can be obtained if the
non-linear structure is known. An application of BFILC is given in Chapter 5.

Setting and goal

Consider the closed-loop setting in Figure 2.2, where H is a non-linear system. All signals in the
figure are defined in the same fashion as in Section 2.1. It is assumed that a linear approximation
of the process sensitivity is available, defined by

J(z) :=
y(z)

ε(z)
=

H(z)

1 +H(z)C(z)
, (B.1)

as well as a linear approximation of the sensitivity:

S(z) :=
e(z)

r(z)
=

1

1 +H(z)C(z)
. (B.2)

Remark 6. Since H may be non-linear, the linear term H(z) in (B.1) and (B.2) is a linear
approximation of H. �

The inverse system H−1 is parametrized by

Ĥ−1 : uff = Ψ(r)v, (B.3)

where Ψ(r) ∈ RT×nv is a basis containing polynomial functions of the reference r ∈ RT and
possibly non-linear terms if known, and v ∈ Rnv are the corresponding coefficients. The aim is to
learn coefficients v from data using the model J(z).

Remark 7. If the basis functions ψi(r) ∈ Ψ(r) are orthogonal [8, Section 1.2.5], there is no overlap
in Rnv and consequently, adding a new basis function ψnv+1(r) leaves parameters v1, . . . , vnv
unchanged. �

Before BFILC is explained, the notation used for the filtering of signals is given. For a dynamic
system A(z) ∈ R and a signal b ∈ RT , the notation Ab = c : RT → RT denotes the filtering of b
by dynamic system A(z). Here, A ∈ RT×T is the (Toeplitz) impulse response matrix of A(z).
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Method

The coefficients v are learned by performing NB closed-loop experiments, or trials, with reference
r ∈ RT . After each trial j, a feedforward signal is computed for trial j+1. The method commences
by performing a trial at j = 0 without feedforward to obtain error e0(v0) ∈ RT with initial
parameters v0, after which it proceeds as follows.

The approximated error at the next trial can be written as

ej+1(vj+1) = Sr− JΨ(r)vj . (B.4)

The next coefficients vj+1 are then obtained by solving the optimization problem

vj+1 = arg min
vj+1

J (vj+1), (B.5)

with cost

J (vj+1) = ‖ej+1(vj+1)‖2We
+ ‖uff,j+1‖2Wf

+ ‖uff,j+1 − uff,j‖2W∆f

= ‖ej − JΨ(r)(vj+1 − vj)‖2We
+ ‖Ψ(r)vj+1‖2Wf

+ ‖Ψ(r)(vj+1 − vj)‖2W∆f
,

(B.6)

with ‖x‖2W = x>Wx, and using the assumption that rj+1 = rj = r, i.e., only one reference is used
during learning. The positive semi-definite weighting matrices Wf and W∆f are used to punish
large control effort values and large changes in feedforward signals over trials respectively. The
positive definite weighting matrix We assigns a relative cost to the expected error at the next trial.

Since this cost is quadratic in vj+1, a closed-form solution for vj+1 can be found, resulting in the
update law

vj+1 = Qvj + Lej , (B.7)

with
Q =

(
Ψ(r)>

(
J>WeJ +Wf +W∆f

)
Ψ(r)

)−1
Ψ(r)>

(
J>WeJ +W∆f

)
Ψ(r)

L =
(
Ψ(r)>

(
J>WeJ +Wf +W∆f

)
Ψ(r)

)−1
Ψ(r)>J>We.

(B.8)

Conditions for convergence and optimal performance are given in [27].

In conclusion, BFILC enables the iterative computation of parameters v in (B.3) describing Ĥ−1,
using update law (B.7).
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Appendix C

Smoothness of Gaussian Processes
with Matèrn and SE kernels

This Appendix shows the difference between squared exponential (SE) kernels (3.16) and Matèrn3/2

kernels (3.18). In particular, it is shown how Matèrn3/2 kernels allow for the representation of
non-smooth functions via (3.15). We commence with an example demonstrating the difference
between both kernels visually. Thereafter, it is explained that Matèrn3/2 kernels are able to rep-
resent non-smooth functions f(x) since they are finitely mean squared differentiable, as opposed
to SE kernels which are infinitely mean squared differentiable.

C.1 Example: SE kernels vs Matèrn kernels for non-smooth
systems

The following example explores the way in which both SE kernels and Matèrn3/2 kernels model a
non-smooth system H−1, and investigates the influence of the lengthscale ` on the variability of
the prior.

Example 5. Consider the system

H−1 : u(t) := f(xt) = sign(y(t)), (C.1)

where xt = [y(t)], i.e., nc = nac = 0. The kernel hyper-parameters are chosen as σf = 1 for both
kernels (3.16) and (3.18). The lengthscales are chosen as `SE = `Matèrn = 3. The covariance of
both kernels as a function of distance x − x′ is shown in Figure C.1. Although the covariance
looks similar, it will be shown next that the type of functions they represent differ considerably.

To show this, five random realizations f are drawn from the prior. Recall from Section 3.2 that
the prior of a GP is uniquely defined by the (Gramian) covariance matrix K(X,X ′) of k(x,x′):

fprior ∼ N (0,K(X,X ′)). (C.2)

Random functions are drawn from this prior for a range of values X = [0, . . . , 20]> ∈ Rn with
n = 4001 as follows. First, a number of random Gaussian noise sequences are defined as ωi ∈
Rn ∼ N (0, 1), i ∈ [1, . . . , 5]. Then, realizations f ∈ Rn are constructed to have covariance matrix
K + σ2

n using

fprior,SE,i = ω>i chol(KSE + σ2
nI),

fprior,Matèrn,i = ω>i chol(KMatèrn + σ2
nI),

(C.3)
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Figure C.1: Covariance of the SE kernel and Matèrn3/2 kernel, with `SE = `Matèrn = 3.
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(a) Using the SE kernel with `SE = 3
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(b) Using the Matèrn3/2 kernel with `Matèrn = 3

Figure C.2: Random functions drawn from the prior of both GPs, using the same noise realizations.
It is clearly visible that the prior defined by the Matèrn3/2 kernel admits much sharper variations
in u(t) = f(xt) and thus is better able to represent non-smooth systems H−1.

with σn = 10−3 and chol(Kn) the Cholesky factorization L of Kn such that LL> = Kn. The σ2
nI

term is added to the covariance matrix for numerical stability, as explained in [22, Appendix A.3].
These realizations f drawn from the prior are shown in Figure C.2. Clearly, the Matèrn3/2 kernel
allows for ‘rougher’ variations in u(t) = f(xt) as a function of xt.

It is stressed that the realizations f of the prior, as computed in (C.3), are not based on any
observations of xt. Realizations f of the prior thus are unrelated to the posterior in (3.11) or
(3.15). It will be shown next how the different prior distributions lead to different posterior
distributions.

Five noisy observations are available at locations X = [x1, . . . ,xN ]>,

X = [−7.5,−1, 0, 1, 7.5]> + ε, (C.4)

with ε ∈ RN ∼ N (0, σ2
n). The posterior mean (3.11) of both GPs with these observations is

shown in Figure C.3. The real function (C.1) is highly non-smooth because of the sign-term, i.e.,
it contains sudden variations in f(x). It was observed before that the Matèrn3/2 kernel leads to
priors with sharper variations in f(x) and indeed, from this posterior mean it becomes clear that
the posterior mean with the Matèrn3/2 kernel closely resembles the real function near the data.
The SE kernel, on the other hand, leads to a posterior mean that is too smooth to represent the
non-smooth system (3.16).

One may wonder if the SE kernel would allow for rougher variations in f(x) if it is defined with a
shorter lengthscale. With lengthscale `SE = 2, it approximately matches the Matèrn3/2 covariance
for short distances, see Figure C.4.
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Figure C.3: Posterior mean of two GPs, defined with an SE kernel and a Matèrn3/2 kernel with
`SE = `Matèrn = 3, along with the real function in green and observations marked by crosses. The
Matèrn3/2 kernel is better able to represent the non-smooth real function.
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Figure C.4: Covariance of the SE kernel and Matèrn3/2 compared, with `SE = 2, `Matèrn = 3.
Now the covariance of the SE kernel is similar to that of the Matèrn3/2 kernel for short distances.
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Figure C.5: Five random functions drawn from the prior of a GP with an SE kernel with `SE = 2.
Even with a narrower covariance than the Matèrn3/2 kernel with `Matèrn = 3, the priors with the
SE kernel admit less variation in f(x) than the rough priors observed using the Matèrn3/2 kernel.
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However, the prior with `SE = 2, depicted in Figure C.5, still exhibits significantly less variation
than that of the Matèrn3/2 kernel with `Matèrn = 3 in Figure C.2. This implies that the width of
the SE kernel, as seen in Figures C.1 and C.4 and defined by `, is not the cause of the SE kernel
being worse than the Matèrn3/2 kernel at representing non-smooth systems H−1. Instead, this is
caused by the structure of the SE kernel, as will be shown next. �

C.2 Derivatives of Gaussian Processes

When discussing smoothness of functions H−1 : f(x), the concept of derivatives arises naturally.
In fact, since differentation is a linear operator, the derivative of a GP of f(x) is another GP [22,
Section 9.4]. The mean square (MS) derivative of a Gaussian process f(x) in direction i is defined
as

∂f(x)

∂xi
= l.i.m

h→0

f (x + hei)− f(x)

h
, (C.5)

where l.i.m refers to the limit in the mean square and ei is the unit vector in direction i [22,
Section 4.1.1]. This new Gaussian Process ∂f(x)/∂xi is defined by a covariance function that can
be expressed in terms of k(x,x′), such that the GP is denoted as

∂f(x)

∂xi
∼ GP

(
0,
∂2k(x,x′)

∂xi∂x′i

)
: Rnθ → R, (C.6)

given that f(x) is defined with a zero-mean function as in (3.7). Thus, for a Gaussian Process f(x)
to be k-times MS-differentiable (i.e. the kth order partial derivative derivative ∂kf(x)/∂xi1 . . . xik
exists for all x ∈ Rnθ ), it must hold that the 2kth order partial derivative ∂2kk(x)/∂2xi1 . . . ∂

2xik
exists and is finite at x = 0. These definitions can be extended to derivatives of higher order [22,
Section 4.1.1].

Whereas a GP of f(x) with an SE kernel is infinitely MS-differentiable, a GP of f(x) with a
Matèrn3/2 kernel is only 1-time MS-differentiable [22, Section 4.2]. It then becomes clear immedi-
ately from (C.6) why the Matèrn3/2 kernel constitutes a prior that is better able at representing
non-smooth functions f(x) than the SE kernel, as observed in the previous section.
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Alternative system
parametrizations

In this appendix, different system parametrizations are explained. First, a linear parametrization is
given and it is shown how this relates to the kernel-based regularization estimate [5]. Subsequently,
a kernel for Volterra parametrizations is given.

Moreover, it is shown how kernels can be combined to represent systems consisting of a sum or
product of different structures. Lastly, it is explained that while this enables the simultaneous
identification of linear and non-linear dynamics in causal models, such an approach is not directly
applicable to the non-causal models created by KIMCON.

D.1 Linear systems

Consider the following kernel function:

k(x,x′) = x>Px′, (D.1)

with P ∈ Rnθ×nθ a positive semi-definite matrix.

Proposition D.1.1 (Equivalence of KBR and GP regression). The posterior mean (3.11) of
Gaussian Process (3.7) with covariance function (D.1), X = ΦN and P = Π is equivalent to the
kernel-based regularization solution (A.5) with Φ = ΦN in (A.6), regardless of the data.

Proof. See Appendix E.

Substitution of this kernel function in (3.1) leads to the following parametrization of Ĥ−1:

u(t) =: f(α | xt) =

N∑
i=1

αix
>
t Pxi, (D.2)

such that the control effort u(t) is a linear combination of output sequence xt and observations
xi ∈ D.

An example of a Gaussian Process with a linear kernel is given next.

Example 6. Consider the same setting as Example 1, where H : y(t) = 2u(t) denotes the
transfer function of a linear system and the choice xt := [y(t)] is made, i.e. nc = nac = 0, nθ = 1.
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The inverse dynamics are

u(t) = f(xt) =
y(t)

2
+ ε, ε ∼ N

(
0, 10−6

)
. (D.3)

Three noisy observations of f at locations xi are available, such that the training matrix is

X =
[
x1 x2 x3

]>
=
[
−3 0 3

]>
, (D.4)

with training targets

u =
[
−1.496 0.003 1.499

]>
. (D.5)

In contrast to Example 1, which uses a stationary SE kernel, the GP is defined here with the
linear kernel function (D.1) with P = 1. The GP is used to make predictions of f∗ at locations
X∗ = [−20, . . . , 20]> by computation of (3.11). The resulting posterior distribution is shown for
each x∗ ∈ X∗ in Figure D.1. As opposed to the GP with a stationary kernel in Example 1, here the
posterior mean is close to the real function even far from the observations, even if Condition (3.23)
is not satisfied. This is because the system parametrization (3.1) with linear kernel (D.1) matches
the linear structure of H−1. This shows that for linear systems, this parametrization by (D.1) is
a reasonable choice of [5] indeed. However, in KIMCON, non-linear systems are considered and
therefore stationary covariance functions are preferred, see Section 3.3.1.

If the noise ε were larger, the slope of the posterior in Figure D.1 may have been more visibly
incorrect. The matrix P functions as regularization to mitigate this effect, see Section A.2 (where
P = Π). �
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Figure D.1: Posterior distribution of the Gaussian Process from Example 6, with a linear kernel.
The posterior mean matches the real function well, because the real function is linear.

D.2 Volterra systems

Suppose H−1 is a pth order Volterra system of the form

u(t) = f(x) =

p∑
n=0

Hn(x) =

p∑
n=0

nθ∑
i1=1

. . .

nθ∑
in=1

h
(n)
i1...in

xi1 . . . xin . (D.6)
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The homogeneous operator Hn can be written as

Hn(x) = η>n φn(x), (D.7)

with φn(x) =
[
xn1 , x

n−1
1 x2, . . . , x1x

n−1
2 , xn2 , . . . , x

n
m

]
and ηn =

(
h

(n)
1,1,...,1, h

(n)
1,2,...,1 , h

(n)
1,3,...,1, . . .

)>
.

It is shown in [7] that since the monomials in (D.7) constitute a RKHS, (D.6) can be parametrized
by (3.1). In particular, the following kernel function is shown to represent f(x):

k(x,x′) = (1 + x>x′)p. (D.8)

Remark 8. Since the covariance of the prior grows rapidly for |x| > 1, it may be desirable to
normalize x to [−1, 1], see [22, Section 4.2.2]. �

In [4], an alternative kernel is proposed that exploits prior knowledge of the Volterra operator Hn

in (D.6), but only causal systems are considered.

D.3 Combining kernels

The sum, product and convolution of two kernels k1(x,x′) and k2(x,x′) is a valid (positive-
semidefinite) kernel [22, Section 4.2.4]. The application for a sum of kernels is explained next, but
the same reasoning can be used for the product and convolution of kernels [1].

Let f(x) = f1(x) + f2(x). It is proven in [1] that if f1 ∈ H1 and f2 ∈ H2, with reproducing kernel
Hilbert spacesH1 andH2 defined by k1(x,x′) and k2(x,x′) respectively, then k(x,x′) = k1(x,x′)+
k2(x,x′) defines H = H1 +H2 and thus k(x,x′) has the reproducing property 〈f(·), k(·,x)〉H =
f(x). In conclusion, functions f(x) consisting of a sum of different structures can be modeled
using a sum of relevant kernel functions.

Example 7. Consider again system (3.22). Since kernel (D.1) represents the class of linear
functions and the periodic term is represented by kernel (3.20), f(x) can be represented by

k(x,x′) = σ2
f

exp

−1

2

∑
i

 sin
(
π
ri

(xi − x′i)
)

`i

2
+ λxPx′

 , (D.9)

with λ ∈ R. If the non-linear term in (3.22) were not known to be periodic, the sum of kernels
(D.1) and (3.16) or (3.18) can be used. �

D.4 Simultaneous identification of linear and non-linear dy-
namics

As described in Appendix D.3, a GP with a sum of kernels can represent a function with a sum
of different (possibly non-linear) structures, because the kernel function represents the system
parametrization, see (3.1).

In [20], the system parametrization is the sum of SE kernel (3.16) and linear kernel k(x,x′) =
x>Px′, P ∈ Rnθ×nθ . While this allows for simultaneous identification of linear and non-linear
dynamics, it has been a conscious choice not to include this linear kernel in KIMCON. The reason
for this is as follows.

The approach of [20] models causal systems H as a GP, in the form of (2.1). In this case, the data-
collection challenge described in Section 3.4 is non-existent since the input to the GP then is u(t),
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which can be chosen freely. However, as described in said section, when modeling H−1 one has to
try to obtain observations close to the reference. Such a data-set is not persistently exciting, which
is a requirement of linear system identification where the model needs to be data-independent, in
contrast to the parametrizations in Section 3.3.1.

For this reason, parametrizing the system in such a way would require two different data-sets.

While this is possible, it has been decided to assume that the linear model Ĥ−1
prior is available

a priori, such that it can be used as a feedforward controller in the data-collection procedure
described in Section 3.4.
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Appendix E

Kernel-based regularization as a
special case of Gaussian Process
regression

This appendix contains the proof of Proposition proposition D.1.1:

Proposition D.1.1 (Equivalence of KBR and GP regression). The posterior mean (3.11) of
Gaussian Process (3.7) with covariance function (D.1), X = ΦN and P = Π is equivalent to the
kernel-based regularization solution (A.5) with Φ = ΦN in (A.6), regardless of the data.

Proof. Let GP (3.7) be defined by the following covariance function:

k(x,x′) = x>Px′. (E.1)

This covariance function is commonly referred to as a linear regularized covariance function be-
cause it leads to a linear parametrization when substituted in (3.1), and P can be interpreted as
a regularization matrix.

Moreover, assume that y(N + i) = y(−i) = 0 ∀ i ∈ N. Under this assumption, the matrix of

training inputs X =
[
x1 . . . xN

]> ∈ D equals the regressor matrix ΦN from (A.6).

Substitution of the covariance function in the system parametrization (3.1) then leads to the form

u(t) =: f(xt) =

N∑
i=1

αix
>
t Pxi

= x>t P

N∑
i=1

αixi

= x>t PΦ>Nα.

(E.2)

To denote the control effort sequence f that led to observed output sequencesX =
[
x1 . . . xN

]>
,

we expand (E.2) vertically to obtain

f(α | X) = XPΦ>Nα. (E.3)

If coefficients α are known, X can be replaced by X∗ to obtain the control effort required for
arbitrary reference sequences X∗ ∈ R̃. It is shown next that the KBR problem (A.5) can be
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retrieved from the optimization problem (3.3) characterizing a Gaussian Process (as explained in
Section 3.1).

First, note that the Gramian K, shorthand for K(X,X) with Kij = k(xi,xj) of covariance
function (E.1), is given by the definition of Gramian matrices:

K = XPX>. (E.4)

With X = ΦN , as assumed in this proposition, this becomes

K(X,X) = ΦNPΦ>N , (E.5)

such that under parametrization (E.2), the control effort sequence f explaining the data ΦN can
be written as

f(α | X = ΦN ) = Kα. (E.6)

This result allows us to rewrite optimization problem (3.3) characterizing the GP as

min
f

J [f ] = ‖uN − f(α | X = ΦN )‖22 + γ‖f(α | X = ΦN )‖2K

= ‖u−Kα‖22 + γ‖Kα‖2K
= ‖u−Kα‖22 + γα>Kα,

(E.7)

where the last step results from the definition of the K-norm, see [22, Section 6.2.2].

Next, the optimization problem will be altered to arrive at the KBR problem. In particular,
f(α | X = ΦN ) will be replaced by f(α | X = X∗ = IN ), to represent the case in which f yields a
feedforward signal θ required to produce output X∗ = IN , i.e., a non-causal impulse on reference
r for output y. The choice X∗ = IN representing a non-causal impulse on r follows from the
ordering of x∗ ∈ X∗, assuming r(N + i) = r(−i) = 0 ∀ i ∈ N:

X∗ =


r(nac) r(nac − 1) . . . r(−nc)

r(nac + 1) r(nac) . . . r(−nc + 1)
...

...
...

r(N − 1 + nac) r(N − 2 + nac) . . . r(N − nc − 1)

 . (E.8)

See Example 8 at the end of this Appendix for more details. Using (E.3) we can then relate f to
impulse response coefficients θ (see (A.3)) as

f(α | X∗ = IN ) = INPΦ>Nα ≡ θ, (E.9)

such that coefficients α can be expressed in terms of impulse response coefficients θ as

α ≡ (Φ>N )†P−1θ. (E.10)

Here, (Φ>N )† denotes the right inverse, i.e., Φ>N (Φ>N )† = IN . Substitution of this expression in
(E.7) with (E.4) yields the problem

min
f

J [f ] = ‖u−K(Φ>N )†P−1θ‖22 + γ((Φ>N )†P−1θ)>K(Φ>N )†P−1θ

= ‖u− ΦNPΦ>N (Φ>N )†P−1θ‖22 + γ((Φ>N )†P−1θ)>ΦNPΦ>N (Φ>N )†P−1θ

= ‖u− ΦNθ‖22 + γ((Φ>N )†P−1θ)>ΦNθ

= ‖u− ΦNθ‖22 + γθ>(P−1)>θ

= ‖u− ΦNθ‖22 + γθ>P−1θ,

(E.11)

since P is symmetric by definition of a kernel matrix. This optimization problem is identical to
the kernel-based regularization problem (A.5) for P = Π.
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In the next example, it is shown how a matrix X∗ = I represents a non-causal impulse response.

Example 8. Suppose H−1 is represented by the non-causal NFIR parametrization (2.4) with
nc = 1, nac = 2, such that control effort u(t) = f(x∗,t) produces reference sequence x∗,t when
applied to H, defined as

x∗,t := [r(t+ 2), r(t+ 1), r(t), r(t− 1)]>. (E.12)

The reference describing an impulse is denoted as

r = [r(0), r(1), r(2), r(3)]>

= [0, 0, 1, 0]>,
(E.13)

such that N = 4 = nθ. Under the assumption that r(N + i) = r(−i) = 0 ∀ i ∈ N, this reference
may be extended as

r = [r(−1), r(0), r(1), r(2), r(3), r(4), r(5)]>

= [0, 0, 0, 1, 0, 0, 0]>.
(E.14)

The overlapping test sequences x∗,t∀t ∈ [0, . . . , N − 1] can then be constructed from the reference
by definition of (E.12) as

x∗,t=0 = [r(0 + 2), r(0 + 1), r(0), r(0− 1)]> = [1, 0, 0, 0]>

x∗,t=1 = [r(1 + 2), r(1 + 1), r(1), r(1− 1)]> = [0, 1, 0, 0]>

x∗,t=2 = [r(2 + 2), r(2 + 1), r(2), r(2− 1)]> = [0, 0, 1, 0]>

x∗,t=3 = [r(3 + 2), r(3 + 1), r(3), r(3− 1)]> = [0, 0, 0, 1]>.

(E.15)

By definition of the matrix X∗ := [x∗,t=0, . . . ,x∗,t=N−1]>, the impulse reference (E.13) then leads
to X∗ = I. �
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Appendix F

MATLAB code of the Wiener
example

This chapter contains the MATLAB code of the Wiener example in Section 4.1. The accompanying
controller file and Simulink file (see Figure F.1) can be found here: http://maxvanmeer.nl/

wienerGP.zip

For simplicity, the code only includes the results yielded by KIMCON, i.e., the comparison with
other methods is omitted. The code relies on the Statistics and Machine Learning Toolbox and
the DSP System Toolbox of MATLAB.

Figure F.1: Simulink file corresponding to the Wiener example.

1 clc
2 clear
3 close all
4

5 %% Define parameters
6 n ac = 300;
7 n c = 300;
8 n th = n c + n ac + 1;
9 std noise = 1e-3;

10 tau = 1/20;
11

12 %% Define P and C
13 w1 = 1*2*pi; % natural eigenfrequency [rad/s]
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14 zeta1 = 0.1; % damping ratio
15 w2 = -0.4*2*pi; % natural eigenfrequency [rad/s]
16 zeta2 = 0.2; % damping ratio
17 s=tf('s');
18 Pinv c = (tf([w1ˆ2],[1 2*zeta1*w1 w1ˆ2]) * tf([w2ˆ2],...
19 [1 2*zeta2*w2 w2ˆ2])) * (s+1)ˆ2;
20

21 % Discretize the system
22 Pinv = c2d(Pinv c,tau);
23 Pinv =ss(Pinv);
24 [zz,pp,kk]=zpkdata(Pinv);
25 zz=zz{1};
26 zz rem = zz(1);%[zz(3),zz(4)];
27 zz=[zz(2),zz(3)];
28 k scale = sum(1+abs(zz rem));
29 Pinv=zpk(zz,pp,kk*k scale,tau);
30 P tmp = inv(Pinv);
31 z = tf('z',tau);
32 P = P tmp / zˆ2;
33 [num,den] = tfdata(P);
34 Pss = ss(P);
35

36 % Load the controller
37 load Controller
38 K d = c2d(shapeit data.C tf,tau);
39 %% Define reference
40 T = 800; % Length of the reference
41 t final = 0:tau:T*tau-tau;
42

43 % Start with 20 seconds of a constant reference to get rid of transients:
44 n pre = ceil(20/tau);
45 r final = cos(2*pi*t final / T / tau)' * 0.5 + 1;
46 r final = [r final(1) * ones(n pre,1); r final; r final(end)*ones(n ac,1)];
47 t final = 0:tau:length(r final)*tau-tau;
48 T = length(t final);
49

50 %% Design excitation references and perform simulations
51 T tilde = 20/tau + T;
52 t tilde = 0:tau:T tilde*tau-tau;
53 freqs = linspace(0.3,1.5,20);
54

55 X = []; u = [];
56 c = 1;
57 n skip = 40;
58 options = simset('SrcWorkspace','current');
59 for i = 1:length(freqs)
60 r tmp{i} = 1 - 0.5*cos(2*pi*t tilde * 0.6/4/5 * freqs(i)-pi)';
61

62 r tmp{i} = [r tmp{i}(1)*ones(n pre,1); r tmp{i}(1:end-n pre)];
63 y0 = r tmp{i}(1);
64 ff = zeros(T,1);
65 r = r tmp{i};
66 t = t tilde;
67 out tmp = sim('Wiener gp sim',[],options);
68 nstart = 300; % We don't care about the first 300 samples (transients)
69 idxs = nstart:nstart+1200-20; % Indices we want to extract for D
70 y train = out tmp.y(idxs);
71 u train = out tmp.u(idxs);
72 for j = 1+n c:n skip:length(y train)-n ac
73 X(c,:) = y train(j+n ac:-1:j-n c);
74 u(c,1) = u train(j);
75 c = c + 1;
76 end
77 all y{i} = y train;
78 all u{i} = u train;
79 end
80
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81 figure
82 plot(t final,r final,'c','LineWidth',2);
83 hold on
84 for i = 1:length(all y)
85 plot(t tilde(idxs),all y{i},'r')
86 end
87 grid
88 legend('$\mathbf{r}$','${\mathbf{y}} i$','Location','southwest',...
89 'Interpreter','Latex')
90 xlabel('Time [s]');
91 ylabel('Output [-]');
92 %% Define the GP and optimize hyper-parameters
93 % Initial values for fitrgp
94 l = 1; % kernel width
95 stdf = 15; % variance of u(t)
96 gp Mdl ref = fitrgp(X,u,...
97 'Kernelfunction','ardsquaredexponential',...
98 'KernelParameters',[l*ones(n th,1);stdf],...
99 'Sigma',std noise,...

100 'BasisFunction','none');
101 %% Compute the feedforward signal
102 % Again, insert a constant reference first to get rid of transients
103 pre2 = 3000;
104 r final long = [r final(1)*ones(pre2,1); r final];
105 t final long = [0:tau:pre2*tau-tau, pre2*tau+t final];
106 f gp = zeros(T,1);
107 L2 = length(r final long);
108 for i = 1:L2
109 idx vals = min(i+n c,L2):-1:max(i-n ac,1);
110 idx = [L2 * ones(1,i+n c-L2), idx vals, 1 * ones(1,1 - (i-n ac))];
111 f gp(i) = predict(gp Mdl ref,r final long(idx)');
112 end
113 cut idx = pre2+1:L2;
114 f gp cut = f gp(cut idx);
115

116 figure
117 plot(t final,f gp cut,'r')
118 grid
119 xlabel('Time [s]');
120 ylabel('Control effort [N]');
121 %% Closed-loop simulation
122 y0 = r final(1);
123 r = r final long;
124 t = t final long;
125 ff = f gp;
126 out gp = sim('Wiener gp sim',[],options);
127

128 figure
129 stairs(t final,out gp.e(cut idx),'r','LineWidth',1.1)
130 xlabel('Time [s]');
131 ylabel('Output error [-]');
132 grid
133 axis([0 max(t final) -0.015 0.015]);
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