3,509 research outputs found
Review of the kinetics of alkaline degradation of cellulose in view of its relevance for safety assessment of radioactive waste repositories
The degradation of cellulose (a substantial component of low- and intermediate-level radioactive waste) under alkaline conditions occurs via two main processes: a peeling-off reaction and a basecatalyzed cleavage of glycosidic bonds (hydrolysis). Both processes show pseudo-first-order kinetics. At ambient temperature, the peeling-off process is the dominant degradation mechanism, resulting in the formation of mainly isosaccharinic acid. The degradation depends strongly on the degree of polymerization (DP) and on the number of reducing end groups present in cellulose. Beyond pH 12.5, the OH- concentration has only a minor effect on the degradation rate. It was estimated that under repository conditions (alkaline environment, pH 13.3-12.5) about 10% of the cellulosic materials (average DP = 1000-2000) will degrade in the first stage (up to 105 years) by the peeling-off reaction and will cause an ingrowth of isosaccharinic acid in the interstitial cement pore water. In the second stage (105-106 years), alkaline hydrolysis will control the further degradation of the cellulose. The potential role of microorganisms in the degradation of cellulose under alkaline conditions could not be evaluated. Proper assessment of the effect of cellulose degradation on the mobilization of radionuclides basically requires knowing the concentration of isosaccharinic acid in the pore water. This concentration, however, depends on several factors such as the stability of ISA under alkaline conditions, sorption of ISA on cement, formation of sparingly soluble ISA-salts, etc. A discussion of all the relevant processes involved, however, is far beyond the scope of the presented overvie
Discovery of long-period variable stars in the very-metal-poor globular cluster M15
We present a search for long-period variable (LPV) stars among giant branch
stars in M15 which, at [Fe/H] ~ -2.3, is one of the most metal-poor Galactic
globular clusters. We use multi-colour optical photometry from the 0.6-m Keele
Thornton and 2-m Liverpool Telescopes. Variability of delta-V ~ 0.15 mag is
detected in K757 and K825 over unusually-long timescales of nearly a year,
making them the most metal-poor LPVs found in a Galactic globular cluster. K825
is placed on the long secondary period sequence, identified for metal-rich
LPVs, though no primary period is detectable. We discuss this variability in
the context of dust production and stellar evolution at low metallicity, using
additional spectra from the 6.5-m Magellan (Las Campanas) telescope. A lack of
dust production, despite the presence of gaseous mass loss raises questions
about the production of dust and the intra-cluster medium of this cluster.Comment: 13 pages, 9 figures, accepted by MNRA
The circumstellar envelope of AFGL 4106
We present new imaging and spectroscopy of the post-red supergiant binary
AFGL 4106. Coronographic imaging in H-alpha reveals the shape and extent of the
ionized region in the circumstellar envelope (CSE). Echelle spectroscopy with
the slit covering almost the entire extent of the CSE is used to derive the
physical conditions in the ionized region and the optical depth of the dust
contained within the CSE.
The dust shell around AFGL 4106 is clumpy and mixed with ionized gas. H-alpha
and [N II] emission is brightest from a thin bow-shaped layer just outside of
the detached dust shell. On-going mass loss is traced by [Ca II] emission and
blue-shifted absorption in lines of low-ionization species. A simple model is
used to interpret the spatial distribution of the circumstellar extinction and
the dust emission in a consistent way.Comment: 10 pages, 11 figures. Accepted for publication in Astronomy &
Astrophysics Main Journa
Flexible high-voltage supply for experimental electron microscope
Scanning microscope uses a field-emission tip for the electron source, an electron gun that simultaneously accelerates and focuses electrons from the source, and one auxiliary lens to produce a final probe size at the specimen on the order of angstroms
Three-micron spectra of AGB stars and supergiants in nearby galaxies
The dependence of stellar molecular bands on the metallicity is studied using
infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and
M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and
in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for
oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB
stars. The equivalent width of acetylene is found to be high even at low
metallicity. The high C2H2 abundance can be explained with a high
carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast,
the HCN equivalent width is low: fewer than half of the extra-galactic carbon
stars show the 3.5micron HCN band, and only a few LMC stars show high HCN
equivalent width. HCN abundances are limited by both nitrogen and carbon
elemental abundances. The amount of synthesized nitrogen depends on the initial
mass, and stars with high luminosity (i.e. high initial mass) could have a high
HCN abundance. CH bands are found in both the extra-galactic and Galactic
carbon stars. None of the oxygen-rich LMC stars show SiO bands, except one
possible detection in a low quality spectrum. The limits on the equivalent
widths of the SiO bands are below the expectation of up to 30angstrom for LMC
metallicity. Several possible explanations are discussed. The observations
imply that LMC and SMC carbon stars could reach mass-loss rates as high as
their Galactic counterparts, because there are more carbon atoms available and
more carbonaceous dust can be formed. On the other hand, the lack of SiO
suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich
stars. The effect on the ISM dust enrichment is discussed.Comment: accepted for A&
Spitzer Space Telescope evidence in NGC 6791: no super-mass-loss at super-solar metallicity to explain helium white dwarfs?
We use archival Spitzer Space Telescope photometry of the old, super-solar
metallicity massive open cluster NGC 6791 to look for evidence of enhanced mass
loss, which has been postulated to explain the optical luminosity function and
low white dwarf masses in this benchmark cluster. We find a conspicuous lack of
evidence for prolificacy of circumstellar dust production that would have been
expected to accompany such mass loss. We also construct the optical and
infrared luminosity functions, and demonstrate that these fully agree with
theoretical expectations. We thus conclude that there is no evidence for the
mass loss of super-solar metallicity red giants to be sufficiently high that
they can avoid the helium flash at the tip of the red giant branch.Comment: accepted for publication in ApJ Letter
- …