14 research outputs found

    Serum glial fibrillary acidic protein in natalizumab-treated relapsing-remitting multiple sclerosis: An alternative to neurofilament light

    Get PDF
    BACKGROUND: There is a need in Relapsing-Remitting Multiple Sclerosis (RRMS) treatment for biomarkers that monitor neuroinflammation, neurodegeneration, treatment response, and disease progression despite treatment. OBJECTIVE: To assess the value of serum glial fibrillary acidic protein (sGFAP) as a biomarker for clinical disease progression and brain volume measurements in natalizumab-treated RRMS patients. METHODS: sGFAP and neurofilament light (sNfL) were measured in an observational cohort of natalizumab-treated RRMS patients at baseline, +3, +12, and +24 months and at the last sample follow-up (median 5.17 years). sGFAP was compared between significant clinical progressors and non-progressors and related to magnetic resonance imaging (MRI)-derived volumes of the whole brain, ventricle, thalamus, and lesion. The relationship between sGFAP and sNfL was assessed. RESULTS: sGFAP and neurofilament light (sNfL) were measured in an observational cohort of natalizumab-treated RRMS patients at baseline, +3, +12, and +24 months and at the last sample follow-up (median 5.17 years). sGFAP was compared between significant clinical progressors and non-progressors and related to magnetic resonance imaging (MRI)-derived volumes of the whole brain, ventricle, thalamus, and lesion. The relationship between sGFAP and sNfL was assessed. DISCUSSION: sGFAP levels related to MRI markers of neuroinflammation and neurodegeneration

    Serum Contactin-1 in CIDP

    Get PDF
    To investigate whether serum levels of contactin-1, a paranodal protein, correlate with paranodal injury as seen in patients with CIDP with antibodies targeting the paranodal region. Serum contactin-1 levels were measured in 187 patients with CIDP and 222 healthy controls. Paranodal antibodies were investigated in all patients. Serum contactin-1 levels were lower in patients (N = 41) with paranodal antibodies compared with patients (N = 146) without paranodal antibodies (p < 0.01) and showed good discrimination between these groups (area under the curve 0.84; 95% CI: 0.76-0.93). These findings suggest that serum contactin-1 levels have the potential to serve as a possible diagnostic biomarker of paranodal injury in CIDP. This study provides class II evidence that serum contactin-1 levels can discriminate between patients with CIDP with or without paranodal antibodies with a sensitivity of 71% (95% CI: 56%-85%) and a specificity of 97% (95% CI: 83%-100%)

    Pre-analytical stability of serum biomarkers for neurological disease: Neurofilament-light, glial fibrillary acidic protein and contactin-1

    No full text
    Objectives: Neurofilament-light (NfL), glial fibrillary acidic protein (GFAP) and contactin-1 (CNTN1) are blood-based biomarkers that could contribute to monitoring and prediction of disease and treatment outcomes in neurological diseases. Pre-analytical sample handling might affect results, which could be disease-dependent. We tested common handling variations in serum of volunteers as well as in a defined group of patients with multiple sclerosis (pwMS). Methods: Sample sets from 5 pwMS and 5 volunteers at the outpatient clinic were collected per experiment. We investigated the effect of the following variables: collection tube type, delayed centrifugation, centrifugation temperature, delayed storage after centrifugation and freeze-thawing. NfL and GFAP were measured by Simoa and CNTN1 by Luminex. A median recovery of 90-110% was considered stable. Results: For most pre-analytical variables, serum NfL and CNTN1 levels remained unaffected. In the total group, NfL levels increased (121%) after 6 h of delay at 2-8 °C until centrifugation, while no significant changes were observed after 24 h delay at room temperature (RT). In pwMS specifically, CNTN1 levels increased from additional freeze-thaw cycles number 2 to 4 (111%-141%), whereas volunteer levels remained stable. GFAP showed good stability for all pre-analytical variables. Conclusions: Overall, the serum biomarkers tested were relatively unaffected by variations in sample handling. For serum NfL, we recommend storage at RT before centrifugation at 2-8 °C up to 6 h or at RT up to 24 h. For serum CNTN1, we advise a maximum of two freeze-thaw cycles. Our results confirm and expand on recently launched consensus standardized operating procedures

    Project Y: The search for clues explaining phenotype variability in MS

    No full text
    Background: To study phenotypic variability in MS patients, well-defined unbiased cohort studies are necessary. The most common and probably most important confounding factor when studying disease phenotype in MS is age. Objective: To describe study design and subject characteristics of a unique birth cohort (Project Y). The overall aim of Project Y is to identify determinants associated with phenotypic variability in MS, eliminating the possibility of confounding by age. Methods: Project Y is a population-based cross-sectional study of all people with MS born in the Netherlands in 1966. Patients and healthy controls were subjected to comprehensive examinations: functional and static imaging, physical and cognitive measurements, and lifestyle factors early and later in life. In addition body fluids were collected and stored for future biomarker research. Results: 452 eligible MS patients were identified. Between December 2017 and January 2021, 367 MS patients and 125 healthy controls participated. The total number of identified cases results in a current prevalence of at least 189/100.000 for people born in the year 1966 in The Netherlands. Conclusion: Project Y is a unique cohort designed to identify factors associated with phenotypic variability in MS patients without the confounding effects of age. This first description of the Project Y cohort indicates that the prevalence of MS in the Netherlands might be higher than previously presumed. Various studies using Project Y data are ongoing and results will be published in upcoming years

    Smartphone-derived keystroke dynamics are sensitive to relevant changes in multiple sclerosis

    No full text
    Background: To investigate smartphone keystroke dynamics (KD), derived from regular typing, on sensitivity to relevant change in disease activity, fatigue, and clinical disability in multiple sclerosis (MS). Methods: Preplanned interim analysis of a cohort study with 102 MS patients assessed at baseline and 3-month follow-up for gadolinium-enhancing lesions on magnetic resonance imaging, relapses, fatigue and clinical disability outcomes. Keyboard interactions were unobtrusively collected during typing using the Neurokeys App. From these interactions 15 keystroke features were derived and aggregated using 16 summary and time series statistics. Responsiveness of KD to clinical anchor-based change was assessed by calculating the area under the receiver operating characteristic curve (AUC). The optimal cut-point was used to determine the minimal clinically important difference (MCID) and compared to the smallest real change (SRC). Commonly used clinical measures were analyzed for comparison. Results: A total of 94 patients completed the follow-up. The five best performing keystroke features had AUC-values in the range 0.72–0.78 for change in gadolinium-enhancing lesions, 0.67–0.70 for the Checklist Individual Strength Fatigue subscale, 0.66–0.79 for the Expanded Disability Status Scale, 0.69–0.73 for the Ambulation Functional System, and 0.72–0.75 for Arm function in MS Questionnaire. The MCID of these features exceeded the SRC on group level. KD had higher AUC-values than comparative clinical measures for the study outcomes, aside from ambulatory function. Conclusions: Keystroke dynamics demonstrated good responsiveness to changes in disease activity, fatigue, and clinical disability in MS, and detected important change beyond measurement error on group level. Responsiveness of KD was better than commonly used clinical measures

    Mild progressive multifocal leukoencephalopathy after switching from natalizumab to ocrelizumab

    No full text
    OBJECTIVE: To describe the disease course of carryover progressive multifocal leukoencephalopathy (PML) after switching from natalizumab to ocrelizumab in 2 patients with relapsing-remitting MS. METHODS: Two case reports with 1 year of follow-up and retrospective longitudinal measurements of serum neurofilament light (NfL) levels and B-cells. RESULTS: PML was diagnosed 78 days (case 1) and 97 days (case 2) after discontinuation of natalizumab. Both patients developed mild immune reconstitution inflammatory syndrome (IRIS) despite B-cell depletion caused by ocrelizumab. NfL levels increased in both patients during PML-IRIS. PML-IRIS lesions stabilized after treatment with mefloquine and mirtazapine, followed by methylprednisolone, and both patients continued therapy with ocrelizumab when B-cells started to repopulate. CONCLUSIONS: The clinical course of carryover PML was mild in both patients, suggesting that B-cell depletion possibly did not aggravate PML-IRIS in these 2 patients

    Neurofilament-light and contactin-1 association with long-term brain atrophy in natalizumab-treated relapsing-remitting multiple sclerosis

    Get PDF
    Background: Despite highly effective treatment strategies for patients with relapsing-remitting multiple sclerosis (RRMS), long-term neurodegeneration and disease progression are often considerable. Accurate blood-based biomarkers that predict long-term neurodegeneration are lacking. Objective: To assess the predictive value of serum neurofilament-light (sNfL) and serum contactin-1 (sCNTN1) for long-term magnetic resonance imaging (MRI)–derived neurodegeneration in natalizumab-treated patients with RRMS. Methods: sNfL and sCNTN1 were measured in an observational cohort of natalizumab-treated patients with RRMS at baseline (first dose) and at 3 months, Year 1, Year 2, and last follow-up (median = 5.2 years) of treatment. Disability progression was quantified using “EDSS-plus” criteria. Neurodegeneration was measured by calculating annualized percentage brain, ventricular, and thalamic volume change (PBVC, VVC, and TVC, respectively). Linear regression analysis was performed to identify longitudinal predictors of neurodegeneration. Results: In total, 88 patients (age = 37 ± 9 years, 75% female) were included, of whom 48% progressed. Year 1 sNfL level (not baseline or 3 months) was associated with PBVC (standardized (std.) β = −0.26, p = 0.013), VVC (standardized β = 0.36, p < 0.001), and TVC (standardized β = −0.24, p = 0.02). For sCNTN1, only 3-month level was associated with VVC (standardized β = −0.31, p = 0.002). Conclusion: Year 1 (but not baseline) sNfL level was predictive for long-term brain atrophy in patients treated with natalizumab. sCNTN1 level did not show a clear predictive value

    Serum Neurofilament Light Association With Progression in Natalizumab-Treated Patients With Relapsing-Remitting Multiple Sclerosis

    No full text
    Background and objectives: To investigate the potential of serum neurofilament light (NfL) to reflect or predict progression mostly independent of acute inflammatory disease activity in patients with relapsing-remitting multiple sclerosis (RRMS) treated with natalizumab. Methods: Patients were selected from a prospective observational cohort study initiated in 2006 at the VU University Medical Center Amsterdam, the Netherlands, including patients with RRMS treated with natalizumab. Selection criteria included an age of 18 years or older and a minimum follow-up of 3 years from natalizumab initiation. Clinical and MRI assessments were performed on a yearly basis, and serum NfL was measured at 5 time points during the follow-up, including on the day of natalizumab initiation (baseline), 3 months, 1 year, and 2 years after natalizumab initiation, and on last follow-up visit. Using general linear regression models, we compared the longitudinal dynamics of NfL between patients with and without confirmed Expanded Disability Status Scale (EDSS) progression between year 1 visit and last follow-up, and between individuals with and without EDSS+progression, a composite endpoint including the EDSS, 9-hole peg test, and timed 25-foot walk. Results: Eighty-nine natalizumab-treated patients with RRMS were included. Median follow-up time was 5.2 years (interquartile range [IQR] 4.3-6.7, range 3.0-11.0) after natalizumab initiation, mean age at time of natalizumab initiation was 36.9 years (SD 8.5), and median disease duration was 7.4 years (IQR 3.8-12.1). Between year 1 and the last follow-up, 28/89 (31.5%) individuals showed confirmed EDSS progression. Data for the EDSS+endpoint was available for 73 out of the 89 patients and 35/73 (47.9%) showed confirmed EDSS+progression. We observed a significant reduction in NfL levels 3 months after natalizumab initiation, which reached its nadir of close to 50% of baseline levels 1 year after treatment initiation. We found no difference in the longitudinal dynamics of NfL in progressors vs nonprogressors. NfL levels at baseline and 1 year after natalizumab initiation did not predict progression at last follow-up. Conclusion: In our cohort of natalizumab-treated patients with RRMS, NfL fails to capture or predict progression that occurs largely independently of clinical or radiologic signs of acute focal inflammatory disease activity. Additional biomarkers may thus be needed to monitor progression in these patients. Classification of evidence: This study provides Class II evidence that serum NfL levels are not associated with disease progression in natalizumab-treated patients with RRMS.</p

    Serum Contactin-1 in CIDP: A Cross-Sectional Study

    No full text
    OBJECTIVE: To investigate whether serum levels of contactin-1, a paranodal protein, correlate with paranodal injury as seen in patients with CIDP with antibodies targeting the paranodal region. METHODS: Serum contactin-1 levels were measured in 187 patients with CIDP and 222 healthy controls. Paranodal antibodies were investigated in all patients. RESULTS: Serum contactin-1 levels were lower in patients (N = 41) with paranodal antibodies compared with patients (N = 146) without paranodal antibodies (p < 0.01) and showed good discrimination between these groups (area under the curve 0.84; 95% CI: 0.76-0.93). CONCLUSIONS: These findings suggest that serum contactin-1 levels have the potential to serve as a possible diagnostic biomarker of paranodal injury in CIDP. CLASSIFICATION OF EVIDENCE: This study provides class II evidence that serum contactin-1 levels can discriminate between patients with CIDP with or without paranodal antibodies with a sensitivity of 71% (95% CI: 56%-85%) and a specificity of 97% (95% CI: 83%-100%)

    Extended interval dosing of ocrelizumab modifies the repopulation of B cells without altering the clinical efficacy in multiple sclerosis

    No full text
    Abstract Background Recent studies suggest that extended interval dosing of ocrelizumab, an anti-B cell therapy, does not affect its clinical effectiveness in most patients with multiple sclerosis (MS). However, it remains to be established whether certain B cell subsets are differentially repopulated after different dosing intervals and whether these subsets relate to clinical efficacy. Methods We performed high-dimensional single-cell characterization of the peripheral immune landscape of patients with MS after standard (SID; n = 43) or extended interval dosing (EID; n = 37) of ocrelizumab and in non-ocrelizumab-treated (control group, CG; n = 28) patients with MS, using mass cytometry by time of flight (CyTOF). Results The first B cells that repopulate after both ocrelizumab dosing schemes were immature, transitional and regulatory CD1d+ CD5+ B cells. In addition, we observed a higher percentage of transitional, naïve and regulatory B cells after EID in comparison with SID, but not of memory B cells or plasmablasts. The majority of repopulated B cell subsets showed an increased migratory phenotype, characterized by higher expression of CD49d, CD11a, CD54 and CD162. Interestingly, after EID, repopulated B cells expressed increased CD20 levels compared to B cells in CG and after SID, which was associated with a delayed repopulation of B cells after a subsequent ocrelizumab infusion. Finally, the number of/changes in B cell subsets after both dosing schemes did not correlate with any relapses nor progression of the disease. Conclusions Taken together, our data highlight that extending the dosing interval of ocrelizumab does not lead to increased repopulation of effector B cells. We show that the increase of CD20 expression on B cell subsets in EID might lead to longer depletion or less repopulation of B cells after the next infusion of ocrelizumab. Lastly, even though extending the ocrelizumab interval dosing alters B cell repopulation, it does not affect the clinical efficacy of ocrelizumab in our cohort of patients with MS
    corecore