65 research outputs found

    Selecting Potential Targetable Biomarkers for Imaging Purposes in Colorectal Cancer Using TArget Selection Criteria (TASC):A Novel Target Identification Tool

    Get PDF
    Peritoneal carcinomatosis (PC) of colorectal origin is associated with a poor prognosis. However, cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is available for a selected group of PC patients, which significantly increases overall survival rates up to 30%. As a consequence, there is substantial room for improvement. Tumor targeting is expected to improve the treatment efficacy of colorectal cancer (CRC) further through 1) more sensitive preoperative tumor detection, thus reducing overtreatment; 2) better intraoperative detection and surgical elimination of residual disease using tumor-specific intraoperative imaging; and 3) tumor-specific targeted therapeutics. This review focuses, in particular, on the development of tumor-targeted imaging agents. A large number of biomarkers are known to be upregulated in CRC. However, to date, no validated criteria have been described for the selection of the most promising biomarkers for tumor targeting. Such a scoring system might improve the selection of the correct biomarker for imaging purposes. In this review, we present the TArget Selection Criteria (TASC) scoring system for selection of potential biomarkers for tumor-targeted imaging. By applying TASC to biomarkers for CRC, we identified seven biomarkers (carcinoembryonic antigen, CXC chemokine receptor 4, epidermal growth factor receptor, epithelial cell adhesion molecule, matrix metalloproteinases, mucin 1, and vascular endothelial growth factor A) that seem most suitable for tumor-targeted imaging applications in colorectal cancer. Further cross-validation studies in CRC and other tumor types are necessary to establish its definitive value

    Use of a Single Hybrid Imaging Agent for Integration of Target Validation with In Vivo and Ex Vivo Imaging of Mouse Tumor Lesions Resembling Human DCIS

    Get PDF
    Screening of biomarker expression levels in tumor biopsy samples not only provides an assessment of prognostic and predictive factors, but may also be used for selection of biomarker-specific imaging strategies. To assess the feasibility of using a biopsy specimen for a personalized selection of an imaging agent, the chemokine receptor 4 (CXCR4) was used as a reference biomarker. Methods: A hybrid CXCR4 targeting peptide (MSAP-Ac-TZ14011) containing a fluorescent dye and a chelate for radioactive labeling was used to directly compare initial flow cytometry–based target validation in fresh tumor tissue to inin vivovivo single photon emission computed tomography (SPECT) imaging and inin vivovivo and exex vivovivo fluorescence imaging. Results: Flow cytometric analysis of mouse tumor derived cell suspensions enabled discrimination between 4T1 control tumor lesions (with low levels of CXCR4 expression) and CXCR4 positive early, intermediate and late stage MIN-O lesions based on their CXCR4 expression levels; CXCR4basal^{basal}, CXCR4+^+ and CXCR4++^{++} cell populations could be accurately discriminated. Mean fluorescent intensity ratios between expression in MIN-O and 4T1 tissue found with flow cytometry were comparable to ratios obtained with in vivo SPECT/CT and fluorescence imaging, ex vivo fluorescence evaluation and standard immunohistochemistry. Conclusion: The hybrid nature of a targeting imaging agent like MSAP-Ac-TZ14011 enables integration of target selection, in vivo imaging and ex vivo validation using a single agent. The use of biopsy tissue for biomarker screening can readily be expanded to other targeting hybrid imaging agents and can possibly help increase the clinical applicability of tumor-specific imaging approaches

    Biomarkers in preclinical cancer imaging

    Get PDF
    In view of the trend towards personalized treatment strategies for (cancer) patients, there is an increasing need to noninvasively determine individual patient characteristics. Such information enables physicians to administer to patients accurate therapy with appropriate timing. For the noninvasive visualization of disease-related features, imaging biomarkers are expected to play a crucial role. Next to the chemical development of imaging probes, this requires preclinical studies in animal tumour models. These studies provide proof-of-concept of imaging biomarkers and help determine the pharmacokinetics and target specificity of relevant imaging probes, features that provide the fundamentals for translation to the clinic. In this review we describe biological processes derived from the “hallmarks of cancer” that may serve as imaging biomarkers for diagnostic, prognostic and treatment response monitoring that are currently being studied in the preclinical setting. A number of these biomarkers are also being used for the initial preclinical assessment of new intervention strategies. Uniquely, noninvasive imaging approaches allow longitudinal assessment of changes in biological processes, providing information on the safety, pharmacokinetic profiles and target specificity of new drugs, and on the antitumour effectiveness of therapeutic interventions. Preclinical biomarker imaging can help guide translation to optimize clinical biomarker imaging and personalize (combination) therapies

    Precision surgery:the role of intra-operative real-time image guidance - outcomes from a multidisciplinary European consensus conference

    Get PDF
    Developments within the field of image-guided surgery are ever expanding, driven by collective involvement of clinicians, researchers, and industry. While the general conception of the potential of image-guided surgery is to improve surgical outcome, the specific motives and goals that drive can differ between the different expert groups. To establish the current and future role of intra-operative image guidance within the field of image-guided surgery a Delphi consensus survey was conducted during the 2(nd) European Congress on Image-guided surgery. This multidisciplinary survey included questions on the conceptual potential and clinical value of image-guided surgery and was aimed at defining specific areas of research and development in the field in order to stimulate further advances towards precision surgery. Obtained results based on questionnaires filled in by 56 panel experts (clinicians: N=30, researchers: N=20 and industry: N=6) were discussed during a dedicated expert discussion session during the conference. The outcome of this Delphi consensus is indicative of the potential improvements offered by image-guided surgery and of the need for further research in this emerging field, that can be enriched by the identification of reliable molecular targets
    corecore