15 research outputs found

    Multiparametric Immunoimaging Maps Inflammatory Signatures in Murine Myocardial Infarction Models.

    Get PDF
    In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed in vivo multiparametric imaging approaches to investigate the immune response following myocardial infarction. The myocardial infarction models encompassed either transient or permanent left anterior descending coronary artery occlusion in C57BL/6 and Apoe-/-mice. We performed nanotracer-based fluorine magnetic resonance imaging and positron emission tomography (PET) imaging using a CD11b-specific nanobody and a C-C motif chemokine receptor 2-binding probe. We found that immune cell influx in the infarct was more pronounced in the permanent occlusion model. Further, using 18F-fluorothymidine and 18F-fluorodeoxyglucose PET, we detected increased hematopoietic activity after myocardial infarction, with no difference between the models. Finally, we observed persistent systemic inflammation and exacerbated atherosclerosis in Apoe-/- mice, regardless of which infarction model was used. Taken together, we showed the strengths and capabilities of multiparametric imaging in detecting inflammatory activity in cardiovascular disease, which augments the development of clinical readouts.This work was supported by National Institute of Health grants R01HL143814 (to Dr Fayad), P01HL131478 (Drs Fayad and Mulder), P41EB025815 (Drs Liu and Gropler ), R35HL145212 (Dr Liu), and R35HL139598 (Dr Nahrendorf) and award K22CA226040 (Dr Rashidian). This work was also supported by an Innovation Research Fund Basic Research Award from the Dana-Farber Cancer Institute (Dr Rashidian). Dr Maier was supported by Deutsche Forschungsgemeinschaft grants (MA 7059/1 and MA 7059/3-1) and is part of SFB1425 funded by the Deutsche Forschungsgemeinschaft (project no. 422681845). All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.S

    A modular approach toward producing nanotherapeutics targeting the innate immune system.

    Get PDF
    Immunotherapies controlling the adaptive immune system are firmly established, but regulating the innate immune system remains much less explored. The intrinsic interactions between nanoparticles and phagocytic myeloid cells make these materials especially suited for engaging the innate immune system. However, developing nanotherapeutics is an elaborate process. Here, we demonstrate a modular approach that facilitates efficiently incorporating a broad variety of drugs in a nanobiologic platform. Using a microfluidic formulation strategy, we produced apolipoprotein A1-based nanobiologics with favorable innate immune system-engaging properties as evaluated by in vivo screening. Subsequently, rapamycin and three small-molecule inhibitors were derivatized with lipophilic promoieties, ensuring their seamless incorporation and efficient retention in nanobiologics. A short regimen of intravenously administered rapamycin-loaded nanobiologics (mTORi-NBs) significantly prolonged allograft survival in a heart transplantation mouse model. Last, we studied mTORi-NB biodistribution in nonhuman primates by PET/MR imaging and evaluated its safety, paving the way for clinical translation.This work was supported by NIH grants R01 CA220234, R01 HL144072, P01 HL131478, and NWO/ZonMW Vici 91818622 (to W.J.M.M.); R01 HL143814 and P01HL131478 (to Z.A.F.); R01 AI139623 (to J.O.); and P30 CA008748 (to T.R.). M.M.T.v.L. was supported by the American Heart Association (grant 19PRE34380423). M.G.N. was supported by a Spinoza grant from the Netherlands Organization for Scientific Research and an ERC Advanced Grant (no. 833247); L.A.B.J. was supported by a Competitiveness Operational Programme grant of the Romanian Ministry of European Funds (P_37_762, MySMIS 103587).S

    Resolving sepsis-induced immunoparalysis via trained immunity by targeting interleukin-4 to myeloid cells.

    Get PDF
    Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle. In mice and non-human primates, an intravenously injected apoA1-IL4-embedding nanoparticle targets myeloid-cell-rich haematopoietic organs, in particular, the spleen and bone marrow. We subsequently demonstrate that IL4 nanotherapy resolved immunoparalysis in mice with lipopolysaccharide-induced hyperinflammation, as well as in ex vivo human sepsis models and in experimental endotoxemia. Our findings support the translational development of nanoparticle formulations of apoA1-IL4 for the treatment of patients with sepsis at risk of immunoparalysis-induced complications.We thank M. Jaeger (Radboudumc) for kindly providing flourescein isothiocyanate-labelled Candida albicans. D. Williams (East Tennessee State University) provided the β-glucan we used in our initial experiments. H. Lemmers (Radboudumc) kindly prepared the purified lipopolysaccharide used for stimulation of primary human monocytes and macrophages. Part of the figures were prepared using (among other software) Biorender.com. B.N. is supported by a National Health and Medical Research Council (Australia) Investigator Grant (APP1173314). This work was supported by National Institutes of Health grants R01 HL144072, R01 CA220234 and P01 HL131478, as well as a Vici grant from the Dutch Research Council NWO and an ERC Advanced Grant (all to W.J.M.M.). M.G.N. was supported by a Spinoza grant from Dutch Research Council NWO and an ERC Advanced Grant (#833247).S

    High-Density Lipoprotein Nanobiologics for Precision Medicine

    No full text
    Nature is an inspirational source for biomedical engineering developments. Particularly, numerous nanotechnological approaches have been derived from biological concepts. For example, among many different biological nanosized materials, viruses have been extensively studied and utilized, while exosome research has gained much traction in the 21st century. In our body, fat is transported by lipoproteins, intriguing supramolecular nanostructures that have important roles in cell function, lipid metabolism, and disease. Lipoproteins' main constituents are phospholipids and apolipoproteins, forming a corona that encloses a hydrophobic core of triglycerides and cholesterol esters. Within the lipoprotein family, high-density lipoprotein (HDL), primarily composed of apolipoprotein Al (apoA-I) and phospholipids, measuring a mere 10 nm, is the smallest and densest particle. Its endogenous character makes HDL particularly suitable as a nanocarrier platform to target a range of inflammatory diseases. For a decade and a half, our laboratories have focused on HDL's exploitation, repurposing, and reengineering for diagnostic and therapeutic applications, generating versatile hybrid nanomaterials, referred to as nanobiologics, that are inherently biocompatible and biodegradable, efficiently cross different biological barriers, and intrinsically interact with immune cells. The latter is facilitated by HDL's intrinsic ability to interact with the ATP-binding cassette receptor Al (ABCA1) and ABCG1, as well as scavenger receptor type B1 (SR-BI). In this Account, we will provide an up-to-date overview on the available methods for extraction, isolation, and purification of apoA-I from native HDL, as well as its recombinant production. ApoA-I's subsequent use for the reconstitution of HDL (rHDL) and other HDL-derived nanobiologics, including innovative microfluidic-based production methods, and their characterization will be discussed. The integration of different hydrophobic and amphiphilic imaging labels, including chelated radioisotopes and paramagnetic or fluorescent lipids, renders HDL nanobiologics suitable for diagnostic purposes. Nanoengineering also allows HDL reconstitution with core payloads, such as diagnostically active nanocrystals, as well as hydrophobic drugs or controlled release polymers for therapeutic purposes. The platform technology's specificity for inflammatory myeloid cells and methods to modulate specificity will be highlighted. This Account will build toward examples of in vivo studies in cardiovascular disease and cancer models, including diagnostic studies by magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET). A translational success story about the escalation of zirconium-89 radiolabeled HDL ("Zr-HDL) PET imaging from atherosclerotic mice to rabbits and pigs and all the way to cardiovascular disease patients is highlighted. Finally, recent advances in nanobiologic-facilitated immunotherapy of inflammation are spotlighted. Lessons, success stories, and perspectives on the use of these nature-inspired HDL mimetic are an integral part of this Accoun

    Targeting trained innate immunity with nanobiologics to treat cardiovascular disease

    No full text
    The innate immune system plays a key role in atherosclerosis progression and the pathogenesis of cardiovascular disease. Trained immunity, an epigenetically regulated hyperresponsive state of myeloid cells, is a driving force underlying chronic inflammation in atherosclerosis. Therapeutically targeting innate trained immunity therefore may mature into a compelling new paradigm for the effective treatment of cardiovascular patients, which would require effective engagement of myeloid cells. For over a decade, we have worked on apolipoprotein A1-based nanomaterials, referred to as nanobiologics, which we have utilized for myeloid cell-directed immunotherapy. Here, we review the application of our nanobiologic immunotherapies in treating vascular disease. The design of nanobiologic therapeutics, as well as their use in targeting myeloid cells and cellular pathways related to trained immunity, is discussed. Furthermore, we show that nanobiologic biocompatibility and in vivo behavior are conserved across species, from mice to larger animals, including rabbits, pigs, and nonhuman primates. Last, we deliberate on the hurdles that currently prevent widespread translation of trained immunity targeting cardiovascular nanotherapies

    Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice

    No full text
    T cell-driven inflammation plays a critical role in the initiation and progression of atherosclerosis. The co-inhibitory protein Cytotoxic T-Lymphocyte Associated protein (CTLA) 4 is an important negative regulator of T cell activation. Here, we studied the effects of the antibody-mediated inhibition of CTLA4 on experimental atherosclerosis by treating 6-8-week-old Ldlr-/- mice, fed a 0.15% cholesterol diet for six weeks, biweekly with 200 μg of CTLA4 antibodies or isotype control for six weeks. 18F-fluorodeoxyglucose Positron Emission Tomography-Computed Tomography showed no effect of the CTLA4 inhibition of activity in the aorta, spleen, and bone marrow, indicating that monocyte/macrophage-driven inflammation was unaffected. Correspondingly, flow cytometry demonstrated that the antibody-mediated inhibition of CTLA4 did not affect the monocyte populations in the spleen. αCTLA4 treatment induced an activated T cell profile, characterized by a decrease in naïve CD44-CD62L+CD4+ T cells and an increase in CD44+CD62L- CD4+ and CD8+ T cells in the blood and lymphoid organs. Furthermore, αCTLA4 treatment induced endothelial activation, characterized by increased ICAM1 expression in the aortic endothelium. In the aortic arch, which mainly contained early atherosclerotic lesions at this time point, αCTLA4 treatment induced a 2.0-fold increase in the plaque area. These plaques had a more advanced morphological phenotype and an increased T cell/macrophage ratio, whereas the smooth muscle cell and collagen content decreased. In the aortic root, a site that contained more advanced plaques, αCTLA4 treatment increased the plaque T cell content. The short-term antibody-mediated inhibition of CTLA4 thus accelerated the progression of atherosclerosis by inducing a predominantly T cell-driven inflammation, and resulted in the formation of plaques with larger necrotic cores and less collagen. This indicates that existing therapies that are based on αCTLA4 antibodies may promote CVD development in patients

    Regulating trained immunity with nanomedicine

    Get PDF
    Trained immunity refers to a hyperresponsive functional state of the innate immune system, which is induced by certain stimuli, such as infections or vaccination. Trained immunity plays a key part in a variety of diseases, including cancer and inflammation, and is regulated through epigenetic and metabolic reprogramming of haematopoietic stem and progenitor cells in the bone marrow, giving rise to hyperactive myeloid cells. Nanomaterials inherently interact with phagocytic myeloid cells and are thus ideal platforms with which to regulate trained immunity. In this Review, we discuss the key pathways of trained immunity and investigate nanomedicine strategies to therapeutically regulate trained immunity. Nanomedicine can be applied not only to induce trained immunity to treat cancer or to enhance resistance to infections, but also to manage hyperinflammation and maladaptive trained immunity in a variety of clinical scenarios. We conclude with an outlook to future possibilities and some remaining challenges for nanomedicine approaches in trained immunity regulation

    In vivo imaging of cerebral glucose metabolism informs on subacute to chronic post-stroke tissue status – A pilot study combining PET and deuterium metabolic imaging

    Get PDF
    Recanalization therapy after acute ischemic stroke enables restoration of cerebral perfusion. However, a significant subset of patients has poor outcome, which may be caused by disruption of cerebral energy metabolism. To assess changes in glucose metabolism subacutely and chronically after recanalization, we applied two complementary imaging techniques, fluorodeoxyglucose (FDG) positron emission tomography (PET) and deuterium (2H) metabolic imaging (DMI), after 60-minute transient middle cerebral artery occlusion (tMCAO) in C57BL/6 mice. Glucose uptake, measured with FDG PET, was reduced at 48 hours after tMCAO and returned to baseline value after 11 days. DMI revealed effective glucose supply as well as elevated lactate production and reduced glutamate/glutamine synthesis in the lesion area at 48 hours post-tMCAO, of which the extent was dependent on stroke severity. A further decrease in oxidative metabolism was evident after 11 days. Immunohistochemistry revealed significant glial activation in and around the lesion, which may play a role in the observed metabolic profiles. Our findings indicate that imaging (altered) active glucose metabolism in and around reperfused stroke lesions can provide substantial information on (secondary) pathophysiological changes in post-ischemic brain tissue

    Tumor Targeting by αvβ3-Integrin-Specific Lipid Nanoparticles Occurs via Phagocyte Hitchhiking

    No full text
    Although the first nanomedicine was clinically approved more than two decades ago, nanoparticles’ (NP) in vivo behavior is complex and the immune system’s role in their application remains elusive. At present, only passive-targeting nanoformulations have been clinically approved, while more complicated active-targeting strategies typically fail to advance from the early clinical phase stage. This absence of clinical translation is, among others, due to the very limited understanding for in vivo targeting mechanisms. Dynamic in vivo phenomena such as NPs’ real-time targeting kinetics and phagocytes’ contribution to active NP targeting remain largely unexplored. To better understand in vivo targeting, monitoring NP accumulation and distribution at complementary levels of spatial and temporal resolution is imperative. Here, we integrate in vivo positron emission tomography/computed tomography imaging with intravital microscopy and flow cytometric analyses to study αvβ3-integrin-targeted cyclic arginine-glycine-aspartate decorated liposomes and oil-in-water nanoemulsions in tumor mouse models. We observed that ligand-mediated accumulation in cancerous lesions is multifaceted and identified “NP hitchhiking” with phagocytes to contribute considerably to this intricate process. We anticipate that this understanding can facilitate rational improvement of nanomedicine applications and that immune cell–NP interactions can be harnessed to develop clinically viable nanomedicine-based immunotherapies

    Tumor Targeting by αvβ3-Integrin-Specific Lipid Nanoparticles Occurs via Phagocyte Hitchhiking.

    Get PDF
    Although the first nanomedicine was clinically approved more than two decades ago, nanoparticles' (NP) in vivo behavior is complex and the immune system's role in their application remains elusive. At present, only passive-targeting nanoformulations have been clinically approved, while more complicated active-targeting strategies typically fail to advance from the early clinical phase stage. This absence of clinical translation is, among others, due to the very limited understanding for in vivo targeting mechanisms. Dynamic in vivo phenomena such as NPs' real-time targeting kinetics and phagocytes' contribution to active NP targeting remain largely unexplored. To better understand in vivo targeting, monitoring NP accumulation and distribution at complementary levels of spatial and temporal resolution is imperative. Here, we integrate in vivo positron emission tomography/computed tomography imaging with intravital microscopy and flow cytometric analyses to study αvβ3-integrin-targeted cyclic arginine-glycine-aspartate decorated liposomes and oil-in-water nanoemulsions in tumor mouse models. We observed that ligand-mediated accumulation in cancerous lesions is multifaceted and identified "NP hitchhiking" with phagocytes to contribute considerably to this intricate process. We anticipate that this understanding can facilitate rational improvement of nanomedicine applications and that immune cell-NP interactions can be harnessed to develop clinically viable nanomedicine-based immunotherapies.This work was supported by the Central Norway Regional Health Authority ‘Helse Midt-Norge’ [AMS: PhD stipend (90062100) and travel grant (90284100); SH: researcher grant (90262100)], the National Institutes of Health (WJMM: R01 CA220234, TR: P30 CA00574), the American Heart Association (CPM: 16SDG31390007), the Norwegian Research Council (SH: 230788/F20), and the Tromsø Research Foundation and Trond Mohn Foundation (SH: 180 °N project).S
    corecore