91 research outputs found

    Resolving the masers in M82

    Full text link
    Despite first being detected in the 1970s, surprisingly little is known about the OH main line maser population in the nearby starburst galaxy M82. Sometimes referred to as 'kilomasers', they have isotropic luminosities intermediate between Galactic masers and those found in more distant megamasers. Several observations have been carried by this group over the last ten years in an attempt to get a better handle on their nature. High velocity resolution VLA observations in 2006 showed that almost all of the maser spots, distributed across the central arcminute of the galaxy, were apparently coincident with background continuum features, and a handful displayed multiple velocity components. The majority of those with velocity structure are located on a blue-shifted arc in the pv-plane, spatially located on an arc northward of the peculiar source known as B41.95+57.5. Now, new results from high spatial and spectral resolution observations with the EVN have resolved several of these masers into multiple spatial components for the first time. The maser emission is compared with known continuum sources in the galaxy, and we conclude that at least some of the maser emission is from high-gain maser action.Comment: Six pages, one table, one figure. To appear in proceedings of the 11th EVN Symposium (Bordeaux, 9-12 October 2012

    Tracing the envelopes around embedded low-mass young stellar objects with HCO+ and millimeter-continuum observations

    Get PDF
    Interferometer observations of millimeter-continuum (OVRO) and single-dish observations of HCO+ and H13CO+ J=1-0, 3-2, and 4-3 (JCMT, IRAM 30m) are presented of nine embedded low-mass young stellar objects (YSOs) in Taurus. All nine objects are detected at 3.4 and 2.7 mm, with fluxes of 4-200 mJy, and consist of unresolved (<3 arcsec) point sources, plus, toward about half of the objects, an extended envelope. The point sources likely are circumstellar disks, showing that these are established early in the embedded phase. Literature values of 1.1 mm continuum emission are used to trace the envelopes, carrying 0.001-0.26 M(sol). In HCO+, the 1-0 lines trace the surrounding clouds, while the 3-2 and 4-3 are concentrated toward the sources with intensities well correlated with the envelope flux. An HCO+/H2 abundance of 1.2e-8 is derived. The HCO+ line strengths and envelope fluxes can be fit simultaneously with the simple collapse model of Shu (1977), and related density power laws with slopes p=1-3. As an indicator of the relative evolutionary phase of a YSO, the ratio of HCO+ 3-2 line intensity over bolometric luminosity is proposed, which is roughly proportional to the current ratio of envelope over stellar mass. It is concluded that HCO+ 3-2 and 4-3 are excellent tracers of the early embedded phase of star formation.Comment: 45 pages, 10 figures, ApJ/AASLaTeX. To be published in The Astrophysical Journa

    The eSMA: description and first results

    Full text link
    The eSMA ("extended SMA") combines the SMA, JCMT and CSO into a single facility, providing enhanced sensitivity and spatial resolution owing to the increased collecting area at the longest baselines. Until ALMA early science observing (2011), the eSMA will be the facility capable of the highest angular resolution observations at 345 GHz. The gain in sensitivity and resolution will bring new insights in a variety of fields, such as protoplanetary/transition disks, high-mass star formation, solar system bodies, nearby and high-z galaxies. Therefore the eSMA is an important facility to prepare the grounds for ALMA and train scientists in the techniques. Over the last two years, and especially since November 2006, there has been substantial progress toward making the eSMA into a working interferometer. In particular, (i) new 345-GHz receivers, that match the capabilities of the SMA system, were installed at the JCMT and CSO; (ii) numerous tests have been performed for receiver, correlator and baseline calibrations in order to determine and take into account the effects arising from the differences between the three types of antennas; (iii) first fringes at 345 GHz were obtained on August 30 2007, and the array has entered the science-verification stage. We report on the characteristics of the eSMA and its measured performance at 230 GHz and that expected at 345 GHz. We also present the results of the commissioning and some initial science-verification observations, including the first absorption measurement of the C/CO ratio in a galaxy at z=0.89, located along the line of sight to the lensed quasar PKS1830-211, and on the imaging of the vibrationally excited HCN line towards IRC+10216.Comment: 12 pages, 7 figures, paper number 7012-12, to appear in Proceedings of SPIE vol. 7012: "Ground-based and Airborne Telescopes II", SPIE conference on Astronomical Instrumentation, Marseille, 23-28 June 200

    Detection of CI in absorption towards PKS 1830-211 with the eSMA

    Get PDF
    We report the first science observations and results obtained with the "extended" SMA (eSMA), which is composed of the SMA (Submillimeter Array), JCMT (James Clerk Maxwell Telescope) and CSO (Caltech Submillimeter Observatory). Redshifted absorptions at z=0.886 of CI (^3P_1 - ^3P_0) were observed with the eSMA with an angular resolution of 0.55"x0.22" at 1.1 mm toward the southwestern image of the remarkable lensed quasar PKS 1830-211, but not toward the northeastern component at a separation of ~1". Additionally, SMA observations of CO, 13CO and C18O (all J=4-3) were obtained toward this object: CO was also detected toward the SW component, but none of the isotopologues were. This is the first time [CI] is detected in this object, allowing the first direct determination of relative abundances of neutral atomic carbon to CO in the molecular clouds of a spiral galaxy at z>0.1. The [CI] and CO profiles can be decomposed into two and three velocity components respectively. We derive C/CO column density ratios ranging from <0.5 (representative of dense cores) to ~2.5 (close to translucent clouds values). This could indicate that we are seeing environments with different physical conditions or that we are witnessing chemical evolution of regions where C has not completely been converted into CO.Comment: 6 pages using emulateapj, 3 tables, 2 figures ; accepted for publication in ApJ

    A Search for Molecular Gas in the Host Galaxy of FRB 121102

    Get PDF
    We present SMA and NOEMA observations of the host galaxy of FRB 121102 in the CO 3-2 and 1-0 transitions, respectively. We do not detect emission from either transition. We set 3σ3\sigma upper limits to the CO luminosity LCO<2.5×107Kkms1pc2L_{CO} < 2.5 \times 10^7\,{\rm K\,km\,s}^{-1} {\, \rm pc^{-2}} for CO 3-2 and LCO<2.3×109Kkms1pc2L_{CO} < 2.3 \times 10^9\, {\rm K\,km\,s}^{-1} {\, \rm pc^{-2}} for CO 1-0. For Milky-Way-like star formation properties, we set a 3σ3\sigma upper limit on the H2H_2 mass of 2.5×108 M2.5 \times 10^8 \rm\ M_{\odot}, slightly less than the predictions for the H2H_2 mass based on the star formation rate. The true constraint on the H2H_2 mass may be significantly higher, however, because of the reduction in CO luminosity that is common forlow-metallicity dwarf galaxies like the FRB host galaxy. These results demonstrate the challenge of identifying the nature of FRB progenitors through study of the host galaxy molecular gas. We also place a limit of 42 μ\muJy (3σ3\sigma) on the continuum flux density of the persistent radio source at 97 GHz, consistent with a power-law extrapolation of the low frequency spectrum, which may arise from an AGN or other nonthermal source.Comment: Accepted for publication in A

    The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    Get PDF
    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p3×104p\lesssim3\times10^{-4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.60.80.6^{\prime\prime}-0.8^{\prime\prime}) object displaying prominent Balmer and [OIII] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, mr=25.1m_{r^\prime} = 25.1 AB mag dwarf galaxy at a redshift of z=0.19273(8)z=0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter 4\lesssim4 kpc and a stellar mass of M47×107MM_*\sim4-7\times 10^{7}\,M_\odot, assuming a mass-to-light ratio between 2 to 3ML1\,M_\odot\,L_\odot^{-1}. Based on the Hα\alpha flux, we estimate the star formation rate of the host to be 0.4Myr10.4\,M_\odot\,\mathrm{yr^{-1}} and a substantial host dispersion measure depth 324pccm3\lesssim 324\,\mathrm{pc\,cm^{-3}}. The net dispersion measure contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102's location reported by Marcote et al (2017) is offset from the galaxy's center of light by \sim200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma ray bursts and superluminous supernovae.Comment: 12 pages, 3 figures, Published in ApJ Letters. V2: Corrected mistake in author lis

    Tomography of Galactic star-forming regions and spiral arms with the Square Kilometer Array

    Get PDF
    © 2014 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence https://creativecommons.org/licenses/by-nc-sa/3.0/us/. Published by Proceedings of Science http://pos.sissa.it/Very Long Baseline Interferometry (VLBI) at radio wavelengths can provide astrometry accurate to 10 micro-arcseconds or better (i.e. better than the target GAIA accuracy) without being limited by dust obscuration. This means that unlike GAIA, VLBI can be applied to star-forming regions independently of their internal and line-of-sight extinction. Low-mass young stellar objects (particularly T Tauri stars) are often non-thermal compact radio emitters, ideal for astrometric VLBI radio continuum experiments. Existing observations for nearby regions (e.g. Taurus, Ophiuchus, or Orion) demonstrate that VLBI astrometry of such active T Tauri stars enables the reconstruction of both the regions' 3D structure (through parallax measurements) and their internal kinematics (through proper motions, combined with radial velocities). The extraordinary sensitivity of the SKA telescope will enable similar "tomographic mappings" to be extended to regions located several kpc from Earth, in particular to nearby spiral arm segments. This will have important implications for Galactic science, galactic dynamics and spiral structure theories
    corecore