229 research outputs found

    Bright light decreases peripheral skin temperature in healthy men:A forced desynchrony study under dim and bright light (II)

    Get PDF
    Human thermoregulation is strictly regulated by the preoptic area of the hypothalamus, which is directly influenced by the suprachiasmatic nucleus (SCN). The main input pathway of the SCN is light. Here, thermoregulatory effects of light were assessed in humans in a forced desynchrony (FD) design. The FD experiment was performed in dim light (DL, 6 lux) and bright white light (BL, 1300 lux) in 8 men in a semi-randomized within-subject design. A 4 × 18 h FD protocol (5 h sleep, 13 h wake) was applied, with continuous core body temperature (CBT) and skin temperature measurements at the forehead, clavicles, navel, palms, foot soles and toes. Skin temperature parameters indicated sleep-wake modulations as well as internal clock variations. All distal skin temperature parameters increased during sleep, when CBT decreased. Light significantly affected temperature levels during the wake phase, with decreased temperature measured at the forehead and toes and increased navel and clavicular skin temperatures. These effects persisted when the lights were turned off for sleep. Circadian amplitude of CBT and all skin temperature parameters decreased significantly during BL exposure. Circadian proximal skin temperatures cycled in phase with CBT, while distal skin temperatures cycled in anti-phase, confirming the idea that distal skin regions reflect heat dissipation and proximal regions approximate CBT. In general, we find that increased light intensity exposure may have decreased heat loss in humans, especially at times when the circadian system promotes sleep

    Bright light increases alertness and not cortisol in healthy men:A forced desynchrony study under dim and bright light (I)

    Get PDF
    Light-induced improvements in alertness are more prominent during nighttime than during the day, suggesting that alerting effects of light may depend on internal clock time or wake duration. Relative contributions of both factors can be quantified using a forced desynchrony (FD) designs. FD designs have only been conducted under dim light conditions (<10 lux) since light above this amount can induce non-uniform phase progression of the circadian pacemaker (also called relative coordination). This complicates the mathematical separation of circadian clock phase from homeostatic sleep pressure effects. Here we investigate alerting effects of light in a novel 4 × 18 h FD protocol (5 h sleep, 13 h wake) under dim (6 lux) and bright light (1300 lux) conditions. Hourly saliva samples (melatonin and cortisol assessment) and 2-hourly test sessions were used to assess effects of bright light on subjective and objective alertness (electroencephalography and performance). Results reveal (1) stable free-running cortisol rhythms with uniform phase progression under both light conditions, suggesting that FD designs can be conducted under bright light conditions (1300 lux), (2) subjective alerting effects of light depend on elapsed time awake but not circadian clock phase, while (3) light consistently improves objective alertness independent of time awake or circadian clock phase. Reconstructing the daily time course by combining circadian clock phase and wake duration effects indicates that performance is improved during daytime, while subjective alertness remains unchanged. This suggests that high-intensity indoor lighting during the regular day might be beneficial for mental performance, even though this may not be perceived as such

    Bright light during wakefulness improves sleep quality in healthy men:A forced desynchrony study under dim and bright light (III)

    Get PDF
    Under real-life conditions, increased light exposure during wakefulness seems associated with improved sleep quality, quantified as reduced time awake during bed time, increased time spent in non-rapid eye movement (NREM) sleep, or increased power of the electroencephalogram delta band (0.5-4 Hz). The causality of these important relationships and their dependency on circadian phase and/or time awake has not been studied in depth. To disentangle possible circadian and homeostatic interactions, we employed a forced desynchrony protocol under dim light (6 lux) and under bright light (1300 lux) during wakefulness. Our protocol consisted of a fast cycling sleep-wake schedule (13 h wakefulness-5 h sleep; 4 cycles), followed by 3 h recovery sleep in a within-subject cross-over design. Individuals (8 men) were equipped with 10 polysomnography electrodes. Subjective sleep quality was measured immediately after wakening with a questionnaire. Results indicated that circadian variation in delta power was only detected under dim light. Circadian variation in time in rapid eye movement (REM) sleep and wakefulness were uninfluenced by light. Prior light exposure increased accumulation of delta power and time in NREM sleep, while it decreased wakefulness, especially during the circadian wake phase (biological day). Subjective sleep quality scores showed that participants rated their sleep quality better after bright light exposure while sleeping when the circadian system promoted wakefulness. These results suggest that high environmental light intensity either increases sleep pressure buildup during wakefulness or prevents the occurrence of micro-sleep, leading to improved quality of subsequent sleep

    Prominent Plasmacytosis Following Intravenous Immunoglobulin Correlates with Clinical Improvement in Guillain-Barré Syndrome

    Get PDF
    BACKGROUND: High doses of pooled polyclonal IgG are commonly used to treat numerous autoimmune diseases. Their mode of action nevertheless remains only partially explained. At the same time, until now, no early biological marker has been able to predict their efficacy. METHODOLOGY/PRINCIPAL FINDINGS: In a first pilot retrospective analysis, we reviewed white blood cell counts and blood smears in consecutive patients with autoimmune disease (n = 202) and non-autoimmune disease (n = 104). Autoimmune patients received either intravenous immunoglobulin (IVIg, n = 103), plasma exchange (n = 78) or no specific treatment (n = 21). We then prospectively monitored consecutive autoimmune patients with IVIg injection (n = 67), or without any specific treatment (n = 10) using the same routine laboratory tests, as well as flow cytometry. Both retrospective and prospective analyses identified large plasma-cell mobilization exclusively in IVIg-treated autoimmune patients 7 days after initiation of treatment. The majority of IVIg-mobilized plasma cells were immature HLA-DR(high)/CD138(low)/CXCR4(low) plasma cells expressing intracellular immunoglobulin G which were neither IVIg- nor human IgG-specific. Importantly, we found a strong negative correlation between the absolute number of IVIg-mobilized plasma cells and time to improve neurological function in both retrospective and prospective studies of Guillain-Barré syndrome (GBS), (r = -0.52, p = 0.0031, n = 30, r = -0.47, p = 0.0028, n = 40, respectively). CONCLUSIONS/SIGNIFICANCE: IVIg promotes immature plasma-cell mobilization in patients with GBS, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis and inflammatory myopathy. Prominent day 7 plasma-cell mobilization is a favourable prognostic marker in patients with GBS receiving IVIg treatment

    Current treatment practice of Guillain-Barré syndrome

    Get PDF
    Objective: To define the current treatment practice of Guillain-Barré syndrome (GBS). Methods: The study was based on prospective observational data from the first 1,300 patients included in the International GBS Outcome Study. We described the treatment practice of GBS in general, and for (1) severe forms (unable to walk independently), (2) no recovery after initial treatment, (3) treatment-related fluctuations, (4) mild forms (able to walk independently), and (5) variant forms including Miller Fisher syndrome, taking patient characteristics and hospital type into account. Results: We excluded 88 (7%) patients because of missing data, protocol violation, or alternative diagnosis. Patients from Bangladesh (n = 189, 15%) were described separately because 83% were not treated. IV immunoglobulin (IVIg), plasma exchange (PE), or other immunotherapy was provided in 941 (92%) of the remaining 1,023 patients, including patients with severe GBS (724/743, 97%), mild GBS (126/168, 75%), Miller Fisher syndrome (53/70, 76%), and other variants (33/40, 83%). Of 235 (32%) patients who did not improve after their initial treatment, 82 (35%) received a second immune modulatory treatment. A treatment-related fluctuation was observed in 53 (5%) of 1,023 patients, of whom 36 (68%) were re-treated with IVIg or PE. Conclusions: In current practice, patients with mild and variant forms of GBS, or with treatment-related fluctuations and treatment failures, are frequently treated, even in absence of trial data to support this choice. The variability in treatment practice can be explained in part by the lack of evidence and guidelines for effective treatment in these situations

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    The CPLEAR detector at CERN

    Get PDF
    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 produced by the annihilation of pˉ\bar{\rm p}'s in a hydrogen gas target. The K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 are identified by their companion products of the annihilation K±π{\rm K}^{\pm} \pi^{\mp} which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.
    corecore