31 research outputs found

    Mattress and pillow for prone positioning for treatment of obstructive sleep apnoea

    Get PDF
    Conclusion: The new mattress and pillow for prone positioning (MPP) is efficient in reducing the apnoea-hypopnoea index (AHI) and oxygen desaturation index (ODI) in most patients with obstructive sleep apnoea (OSA), with satisfactory compliance. Objective: The aim of the present study was to evaluate the effect of the prone body and head sleep position on severity of disease in patients with OSA after 4 weeks of adaptation to a mattress and pillow facilitating prone positioning. Methods: Fourteen patients with mild to severe OSA, 11 men and 3 women with a mean AHI of 26 (min, 6; max, 53) and mean ODI of 21 (min, 6; max, 51) were evaluated. Two polysomnographic (PSG) studies were performed. The first PSG study was without any treatment and the second was after 4 weeks of adaptation to the MPP for prone positioning of the body and the head. Results: Mean AHI and ODI decreased from 26 and 21 to 8 and 7, respectively (p 4 h per night during the 4-week study.Acta Otolaryngologica Foundation, Swede

    Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila melanogaster

    Get PDF
    Background: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress. Methods and Findings: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genomewide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67–79 % and 56–66 % of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis. Conclusions: We identified novel candidate genes associated with variation in resistance to oxidative stress that hav
    corecore