23 research outputs found

    Interplay between gut bacteria and Parkinson’s disease medication

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder, which affects approximately 6 million individuals worldwide. The main pathologic feature observed in PD patients is the abnormal aggregation of protein and loss of dopaminergic neurons in the midbrain, resulting in motor deficits. Levodopa remains the “golden” standard treatment to restore the absence of dopamine in the brain. Although the start of levodopa treatment has an optimal efficacy, the progression of the disease causes a high variability in the efficacy of levodopa treatment among patients resulting in an unstable and unpredictable clinical response; motor-fluctuations. Besides motor deficits, PD patients also experience various non-motor symptoms such as gastrointestinal dysfunction. In this thesis, we showed that gut bacteria can contribute to the reduction of levodopa availability in the blood-circulation and that they can metabolize the unabsorbed residues of levodopa to various products that alter the gut motility. Furthermore, we showed that the most commonly used PD medications per se may affect the small intestinal motility, the main site of drug absorption, thereby altering the microbiota composition. Such events will potentially create a vicious cycle among the microbiota, PD medication, and gastrointestinal function, and urges for consideration of PD medication and gastrointestinal function when assessing alterations in the PD-associated microbiota. Finally, determining the clinical impact of gut bacteria on PD medication will help reduce the factors contributing to compromised levodopa bioavailability and the unwarranted side effects that result potentially in and from increased treatment regimen

    Contributions of Gut Bacteria and Diet to Drug Pharmacokinetics in the Treatment of Parkinson's Disease

    Get PDF
    Parkinson's disease is the second-most common neurodegenerative disorder worldwide. Besides deciphering the mechanisms that underlie the etiology of the disease, it is important to elucidate the factors that influence the efficacy of the treatment therapeutics. Levodopa, which remains the golden treatment of the disease, is absorbed in the proximal small intestine. A reduction in levodopa absorption, leads to reduction in striatal dopamine levels and, in turn, an "off"-episode. In fact, motor fluctuations represent a major problem during the progression of the disease and alteration between "on" (mobility often with dyskinesia) and "off" (immobility, akinesia) episodes contribute to a decreased quality of life. Dietary amino acids can interfere with the absorption of levodopa from the gut lumen and its transport through the blood brain barrier. In addition, higher abundance of specific gut bacteria that restrict levodopa absorption plays a significant role in motor fluctuations in a subset of Parkinson's disease patients. Here, we review the impact of factors potentially interfering with levodopa absorption, focusing on levodopa transport, diet, and gut bacterial interference with the bioavailability of levodopa

    Parkinson's disease medication alters small intestinal motility and microbiota composition in healthy rats

    Get PDF
    Parkinson’s disease (PD) is known to be associated with altered gastrointestinal function and microbiota composition. To date, the effect of PD medication on the gastrointestinal function and microbiota, at the site of drug absorption, the small intestine, has not been studied, although it may represent an important confounder in reported microbiota alterations observed in PD patients. To this end, healthy (non-PD) wild-type Groningen rats were employed and treated with dopamine, pramipexole (in combination with levodopa-carbidopa), or ropinirole (in combination with levodopa-carbidopa) for 14 sequential days. Rats treated with dopamine agonists showed a significant reduction in small intestinal motility and an increase in bacterial overgrowth in the distal small intestine. Notably, significant alterations in microbial taxa were observed between the treated and vehicle groups; analogous to the changes previously reported in human PD versus healthy control microbiota studies. These microbial changes included an increase in Lactobacillus and Bifidobacterium and a decrease in Lachnospiraceae and Prevotellaceae. Markedly, certain Lactobacillus species correlated negatively with levodopa levels in the systemic circulation, potentially affecting the bioavailability of levodopa. Overall, the study highlights a significant effect of PD medication intrinsically on disease-associated comorbidities, including gastrointestinal dysfunction and small intestinal bacterial overgrowth, as well as the gut microbiota composition. The results urge future studies to take into account the influence of PD medication per se when seeking to identify microbiota-related biomarkers for PD. IMPORTANCE Parkinson’s disease (PD) is the second most common neurodegenerative disorder and is known to be associated with altered gastrointestinal function and microbiota composition. We previously showed that the gut bacteria harboring tyrosine decarboxylase enzymes interfere with levodopa, the main treatment for PD (S. P. van Kessel, A. K. Frye, A. O. El-Gendy, M. Castejon, A. Keshavarzian, G. van Dijk, and S. El Aidy, Nat Commun 10:310, 2019). Although PD medication could be an important confounder in the reported alterations, its effect, apart from the disease itself, on the microbiota composition or the gastrointestinal function at the site of drug absorption, the small intestine, has not been studied. The findings presented here show a significant impact of commonly prescribed PD medication on the small intestinal motility, small intestinal bacterial overgrowth, and microbiota composition, irrespective of the PD. Remarkably, we observed negative associations between bacterial species harboring tyrosine decarboxylase activity and levodopa levels in the systemic circulation, potentially affecting the bioavailability of levodopa. Overall, this study shows that PD medication is an important factor in determining gastrointestinal motility and, in turn, microbiota composition and may, partly, explain the differential abundant taxa previously reported in the cross-sectional PD microbiota human studies. The results urge future studies to take into account the influence of PD medication on gut motility and microbiota composition when seeking to identify microbiota-related biomarkers for PD

    Gut bacterial tyrosine decarboxylase associates with clinical variables in a longitudinal cohort study of Parkinsons disease

    Get PDF
    Gut microbiota influences the clinical response of a wide variety of orally administered drugs. However, the underlying mechanisms through which drug-microbiota interactions occur are still obscure. Previously, we reported that tyrosine decarboxylating (TDC) bacteria may restrict the levels of levodopa reaching circulation in patients with Parkinson's disease (PD). We observed a significant positive association between disease duration and the abundance of the bacterial tdc-gene. The question arises whether increased exposure to anti-PD medication could affect the abundance of bacterial TDC, to ultimately impact drug efficacy. To this end, we investigated the potential association between anti-PD drug exposure and bacterial tdc-gene abundance over a period of 2 years in a longitudinal cohort of PD patients and healthy controls. Our data reveal significant associations between tdc-gene abundance, several anti-PD medications, including entacapone, rasagiline, pramipexole, and ropinirole but not levodopa, and gastrointestinal symptoms, warranting further research on the effect of anti-PD medication on microbial changes and gastrointestinal function.Peer reviewe

    Gut bacterial deamination of residual levodopa medication for Parkinson's disease

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Gastrointestinal tract dysfunction is one of the non-motor features, where constipation is reported as the most common gastrointestinal symptom. Aromatic bacterial metabolites are attracting considerable attention due to their impact on gut homeostasis and host's physiology. In particular, Clostridium sporogenes is a key contributor to the production of these bioactive metabolites in the human gut. RESULTS: Here, we show that C. sporogenes deaminates levodopa, the main treatment in Parkinson's disease, and identify the aromatic aminotransferase responsible for the initiation of the deamination pathway. The deaminated metabolite from levodopa, 3-(3,4-dihydroxyphenyl)propionic acid, elicits an inhibitory effect on ileal motility in an ex vivo model. We detected 3-(3,4-dihydroxyphenyl)propionic acid in fecal samples of Parkinson's disease patients on levodopa medication and found that this metabolite is actively produced by the gut microbiota in those stool samples. CONCLUSIONS: Levodopa is deaminated by the gut bacterium C. sporogenes producing a metabolite that inhibits ileal motility ex vivo. Overall, this study underpins the importance of the metabolic pathways of the gut microbiome involved in drug metabolism not only to preserve drug effectiveness, but also to avoid potential side effects of bacterial breakdown products of the unabsorbed residue of medication

    Interplay between gut bacteria and Parkinson’s disease medication: A vicious circle?

    No full text
    SAMENVATTINGOp 5 november 2021 promoveerde Sebastiaan P. van Kessel aan de Rijksuniversiteit Groningen op het proefschrift getiteld ‘Interplay between gut bacteria and Parkinson’s disease medication’. Het onderzoek werd uitgevoerd onder leiding van promotoren prof. dr. S. El Aidy en prof. dr. L. Dijkhuizen. In dit artikel worden de belangrijkste bevindingen beschreven.(TIJDSCHR NEUROL NEUROCHIR 2022;123(2):86–8)<br/

    Bacillus subtilis SepF Binds to the C-Terminus of FtsZ

    Get PDF
    Bacterial cell division is mediated by a multi-protein machine known as the "divisome", which assembles at the site of cell division. Formation of the divisome starts with the polymerization of the tubulin-like protein FtsZ into a ring, the Z-ring. Z-ring formation is under tight control to ensure bacteria divide at the right time and place. Several proteins bind to the Z-ring to mediate its membrane association and persistence throughout the division process. A conserved stretch of amino acids at the C-terminus of FtsZ appears to be involved in many interactions with other proteins. Here, we describe a novel pull-down assay to look for binding partners of the FtsZ C-terminus, using a HaloTag affinity tag fused to the C-terminal 69 amino acids of B. subtilis FtsZ. Using lysates of Escherichia coli overexpressing several B. subtilis cell division proteins as prey we show that the FtsZ C-terminus specifically pulls down SepF, but not EzrA or MinC, and that the interaction depends on a conserved 16 amino acid stretch at the extreme C-terminus. In a reverse pull-down SepF binds to full-length FtsZ but not to a FtsZ Delta C16 truncate or FtsZ with a mutation of a conserved proline in the C-terminus. We show that the FtsZ C-terminus is required for the formation of tubules from FtsZ polymers by SepF rings. An alanine-scan of the conserved 16 amino acid stretch shows that many mutations affect SepF binding. Combined with the observation that SepF also interacts with the C-terminus of E. coli FtsZ, which is not an in vivo binding partner, we propose that the secondary and tertiary structure of the FtsZ C-terminus, rather than specific amino acids, are recognized by SepF
    corecore