622 research outputs found

    Rare diseases: human genome research is coming home

    Get PDF
    After a long and largely disappointing detour, Genome Research has reidentified Rare Diseases as a major opportunity for improving health care and a clue to understanding gene and genome function. In this Special Issue of CSH Molecular Case Studies on Rare Diseases, several invited Perspectives, numerous Case Reports, and this Editorial itself address recent breakthroughs as well as unsolved problems in this wide field. These range from exciting prospects for gap-free diagnostic whole-genome sequencing to persisting problems related to identifying and distinguishing pathogenic and benign variants; and from the good news that soon, the United Kingdom will no longer be the only country to have introduced whole-genome sequencing into health care to the sobering conclusion that in many countries the clinical infrastructure for bringing Genome Medicine to the patient is still lacking. With less than 5000 genes firmly implicated in disease, the identification of at least twice as many disease genes is a major challenge, and the elucidation of their function is an even larger task. But given the renewed interest in rare diseases, their importance for health care, and the vast and growing spectrum of concepts and methods for studying them, the future of Human Genome Research is bright

    Eliciting Tacit Knowledge with a Grammar-targeted Interview Method

    Get PDF
    Tacit knowledge represents a challenge to knowledge elicitation due to the assumption that this type of knowledge cannot be articulated. We argue that Polanyi's (1966:4) widely cited notion that “we know more than we can tell” represents a weak model of language that does not acknowledge the grammatical patterns in spoken discourse that we, as speakers, apply tacitly. We investigate the hypothesis that individuals articulate what they know through grammatical patterns, referred to as under-representation, without direct awareness. This thesis develops and pilots a grammar-targeted interview method aimed at unpacking specific grammatical features that occur in spoken discourse. The model of language from which these features are derived is Systemic Functional Linguistics. We report findings from three empirical studies of tacit knowledge in corporate organisations where we used the grammar-targeted interview technique to elicit tacit knowledge in the areas of knowledge management, requirements analysis and performance reviews. We compare this interview method with a content-targeted approach. The results show that the grammar-targeted technique produces less under-represented discourse thus allowing tacit knowledge held by the interviewees to be made visible. Based on the linguistic analyses undertaken in these field studies we propose that Polanyi’s expression “we know more than we tell” be reformulated to “we tell more than we realise we know”

    Metabolic Evaluation of Epilepsy: A Diagnostic Algorithm With Focus on Treatable Conditions

    Get PDF
    Although inborn errors of metabolism do not represent the most common cause of seizures, their early identification is of utmost importance, since many will require therapeutic measures beyond that of common anti-epileptic drugs, either in order to control seizures, or to decrease the risk of neurodegeneration. We translate the currently-known literature on metabolic etiologies of epilepsy (268 inborn errors of metabolism belonging to 21 categories, with 74 treatable errors), into a 2-tiered diagnostic algorithm, with the first-tier comprising accessible, affordable, and less invasive screening tests in urine and blood, with the potential to identify the majority of treatable conditions, while the second-tier tests are ordered based on individual clinical signs and symptoms. This resource aims to support the pediatrician, neurologist, biochemical, and clinical geneticists in early identification of treatable inborn errors of metabolism in a child with seizures, allowing for timely initiation of targeted therapy with the potential to improve outcomes

    Vitamin B6 and Related Inborn Errors of Metabolism

    Get PDF
    Vitamin B6 (vitB6) is a generic term that comprises six interconvertible pyridine compounds. These vitB6 compounds (also called vitamers) are pyridoxine (PN), pyridoxamine (PM), pyridoxal (PL) and their 5′-phosphorylated forms pyridoxine 5′-phosphate (PNP), pyridoxamine 5′-phosphate (PMP) and pyridoxal 5′-phosphate (PLP). VitB6 is an essential nutrient for all living organisms, but only microorganisms and plants can carry out de novo synthesis of this vitamin. Other organisms obtain vitB6 from dietary sources and interconvert its different forms according to their needs via a biochemical pathway known as the salvage pathway. PLP is the biologically active form of vitB6 which is important for maintaining the biochemical homeostasis of the body. In the human body, PLP serves as a cofactor for more than 140 enzymatic reactions, mainly associated with synthesis, degradation and interconversion of amino acids and neurotransmitter metabolism. PLP-dependent enzymes are also involved in various physiological processes, including biologically active amine biosynthesis, lipid metabolism, heme synthesis, nucleic acid synthesis, protein and polyamine synthesis and several other metabolic pathways. PLP is an important vitamer for normal brain function since it is required as a coenzyme for the synthesis of several neurotransmitters including D-serine, D-aspartate, L-glutamate, glycine, γ-aminobutyric acid (GABA), serotonin, epinephrine, norepinephrine, histamine and dopamine. Intracellular levels of PLP are tightly regulated and conditions that disrupt this homeostatic regulation can cause disease. In humans, genetic and dietary (intake of high doses of vitB6) conditions leading to increase in PLP levels is known to cause motor and sensory neuropathies. Deficiency of PLP in the cell is also implicated in several diseases, the most notable example of which are the vitB6-dependent epileptic encephalopathies. VitB6-dependent epileptic encephalopathies (B6EEs) are a clinically and genetically heterogeneous group of rare inherited metabolic disorders. These debilitating conditions are characterized by recurrent seizures in the prenatal, neonatal, or postnatal period, which are typically resistant to conventional anticonvulsant treatment but are well-controlled by the administration of PN or PLP. In addition to seizures, children affected with B6EEs may also suffer from developmental and/or intellectual disabilities, along with structural brain abnormalities. Five main types of B6EEs are known to date, these are: PN-dependent epilepsy due to ALDH7A1 (antiquitin) deficiency (PDE-ALDH7A1) (MIM: 266100), hyperprolinemia type 2 (MIM: 239500), PLP-dependent epilepsy due to PNPO deficiency (MIM: 610090), hypophosphatasia (MIM: 241500) and PLPBP deficiency (MIM: 617290). This chapter provides a review of vitB6 and its different vitamers, their absorption and metabolic pathways in the human body, the diverse physiological roles of vitB6, PLP homeostasis and its importance for human health. Finally, the chapter reviews the inherited neurological disorders affecting PLP homeostasis with a special focus on vitB6-dependent epileptic encephalopathies (B6EEs), their different subtypes, the pathophysiological mechanism underlying each type, clinical and biochemical features and current treatment strategies

    Impaired dendritic cell proinflammatory cytokine production in psoriatic arthritis

    Get PDF
    Item does not contain fulltextOBJECTIVE: The pathogenesis of psoriatic arthritis (PsA) remains poorly understood. The underlying chronic inflammatory immune response is thought to be triggered by unknown environmental factors potentially arising from a defective immune function. We undertook this study to determine whether an impaired acute inflammatory response by dendritic cells (DCs) might compromise the clearance of bacteria and predispose to chronic inflammation. METHODS: We determined cytokine production by DCs from healthy controls and from patients with rheumatoid arthritis, PsA, and psoriasis in response to Mycobacterium tuberculosis, Mycobacterium avium paratuberculosis, and a range of other bacteria and Toll-like receptor (TLR) ligands. Phenotypic differences involved in cellular responses against (myco)bacteria were determined by quantitative polymerase chain reaction and flow cytometry. RESULTS: The secretion of proinflammatory cytokines by PsA DCs was impaired upon in vitro challenge with mycobacteria and TLR-2 ligands. This impairment was associated with elevated serum levels of C-reactive protein. The expression of TLR-2 and other receptors known to mediate mycobacterial recognition was unaltered. In contrast, the intracellular TLR inhibitors suppressor of cytokine signaling 3 and A20 were more highly expressed in DCs from PsA patients. PsA DCs further demonstrated up-regulated levels of ATG16L1, NADPH oxidase 2, and LL37, which are molecules implicated in the immune response against intracellular bacteria. CONCLUSION: Our findings indicate that DCs from PsA patients have a disordered immune response toward some species of (myco)bacteria. This might predispose to impaired immune responses to, and in turn impaired clearance of, these bacteria, setting the stage for the chronic inflammation of joints, entheses, skin, and the gut
    • …
    corecore