30 research outputs found
Framework for state and unknown input estimation of linear time-varying systems
The design of unknown-input decoupled observers and filters requires the
assumption of an existence condition in the literature. This paper addresses an
unknown input filtering problem where the existence condition is not satisfied.
Instead of designing a traditional unknown input decoupled filter, a
Double-Model Adaptive Estimation approach is extended to solve the unknown
input filtering problem. It is proved that the state and the unknown inputs can
be estimated and decoupled using the extended Double-Model Adaptive Estimation
approach without satisfying the existence condition. Numerical examples are
presented in which the performance of the proposed approach is compared to
methods from literature.Comment: This paper has been accepted by Automatica. It considers unknown
input estimation or fault and disturbances estimation. Existing approaches
considers the case where the effects of fault and disturbance can be
decoupled. In our paper, we consider the case where the effects of fault and
disturbance are coupled. This approach can be easily extended to nonlinear
system
A Sampled-Data Form of Incremental Nonlinear Dynamic Inversion for Spacecraft Attitude Control
This paper presents a sampled–data form of the recently reformulated incremental nonlinear dynamic inversion (INDI) applied for robust spacecraft attitude control. INDI is a combined model– and sensor–based approach mostly applied for attitude control that only requires an accurate control effectiveness model and measurements of the state and some of its derivatives. This results in a reduced dependency on exact knowledge of system dynamics which is known as a major disadvantage of model–based nonlinear dynamic inversion controllers. However, most of the INDI derivations proposed in the literature assume a very high sampling rate of the system and its controller while also not explicitly considering the available sampling time of the digital control computer. Neglecting the sampling time and its effect in the controller derivations can lead to stability and performance issues of the resulting closed–loop nonlinear system. Therefore, our objective is to bridge this gap between continuous–time, highly sampled INDI formulations and their discrete, lowly sampled counterparts in the context of spacecraft attitude control where low sampling rates are common. Our sampled–data reformulation allows explicit consideration of the sampling time via an approximate sampled–data model in normal form widely known in the literature. The resulting sampled–data INDI control is still robust up to a certain sampling time since it remains only sensitive to parametric uncertainties. Simulation experiments for this particular problem demonstrate the bridge considered between INDI formulations which allows for low sampling control rates
ROTORCRAFT-PILOT COUPLINGS: ANALYSIS AND DETECTION IN A SAFETY ENHANCEMENT FRAMEWORK
Nowadays, the complexity of high speed civil transport and highly-augmented rotorcraft, has led to an increase in the chances of encountering unwanted unstable phenomena, such as the so called Aircraft/Rotorcraft-Pilot Couplings (A/RPCs) or Pilot-Induced Oscillations (PIOs), whose unpredictability has given rise to a serious problem concerning the safety of a mission. When talking about PIOs, McRuer defined them as "inadvertent, sustained aircraft oscillations which are a consequence of an abnormal joint enterprise between the aircraft and the pilot". However, A/RPCs, these undesirable events associated with the interaction between pilot and aircraft, have become diverse and more complex than those encountered in the past. At the moment, there are different methods available to prevent and detect Cat. I/II A/RPC, but particular interest has recently arisen in this topic for 2ight simulation applications as any enhancement of these tools in order to accurately and objectively predict, detect (in real-time) and alleviate RPCs will be greatly welcomed. One of the main questions to be answered through the efforts carried out within this work is related to the better detection in real-time of embedded tendencies to RPCs in modern aircraft. To answer this question, initially an assessment of the eZcacy of the Phase-Aggression Criterion (PAC), which has been designed a few years ago at the University of Liverpool, will be undertaken either: as a means of alerting the pilot to conditions likely to lead to the onset of a PIO; or, given that the time available for the pilot to counteract may be extremely limited, as a means to assist him/her in alleviating (automatically) the PIO condition itself. Preliminary results from 2ight simulation trials to explore how best to achieve this will be reported. Moreover, this work will report on the development of PAC boundaries for more highly augmented response types. Furthermore, as classified by McRuer, Cat. III PIO, which is nonlinear in essence, is the most complex one. However, the researches on Cat. III PIO are rare. This paper will reveal some elementary results of Cat. III PIO. Since there is no existing method used for predicting and detecting Cat. III PIO, this paper utilized the characteristics of PIO, such as the amplitude, the oscillation frequency and ultimate tendency of key aircraft response states to judge Cat. III PIO preliminarily. By using this elementary judgment of PIO, we studied the following factors: time delay of pilot input and helicopter main body, actuator position saturation, actuator rate limit and SCAS control authority in triggering PIO. Results show that PIO induced by actuator position saturation, actuator rate limit and SCAS control authority can be regarded as Cat. III PIO as the variation of these factors can be viewed as a kind of transition of effective controlled vehicle dynamics. These kinds of transition can cause a mismatch between the effective controlled vehicle dynamics and pilot control strategy, which is the main cause of Cat. III PIO
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Design, Implementation and Flight-Tests of Incremental Nonlinear Flight Control Methods
This paper presents the design and implementation of incremental backstepping (IBS) flight control laws for the attitude control and stabilization on a fixed-wing aircraft. The design consists of multiple functionalities such as command-filtered backstepping, angle of attack control and body attitude control, that are based around an incremental control inner loop that tracks the angular rates of the aircraft. The results include flight data of an
integrated IBS design that validate simulation results of control laws shown previously in literature. The results show that it is possible to implement robust nonlinear flight control laws that are easy to tune and require only little knowledge about the system dynamics parameters
Design and Flight Testing of Incremental Nonlinear Dynamic Inversion based Control Laws for a Passenger Aircraft
This paper describes the design, implementation and flight testing of flight control laws based on Incremental nonlinear Dynamic Inversion (INDI). The method compares commanded and measured accelerations to compute increments on the current control deflections. This results in highly robust control solutions with respect to model uncertainties as well as changes in aircraft dynamic characteristics of failure cases during flight. At the same time, the complexity of the algorithms is similar to classical ones. The key for practical implementation is in ensuring synchronization between angular acceleration and control deflection measurements or estimates. The underlying theory and practical design methods of INDI are very well understood, but implementation and testing has remained
limited to sub-scale UAVs. The main contribution of this paper is to present the design and validation of manual attitude control functions for a Cessna Citation II experimental aircraft, covering control structure design, application of INDI, design optimization, robustness analyses, software implementation, ground and flight testing. For comparison, also control laws based on classical Nonlinear Dynamic Inversion were implemented and flown. The flight tests were highly successful and marked the first successful demonstration of INDI on a CS-25 certified aircraft. The flight test results proved that INDI clearly outperforms NDI and provided valuable lessons-learnt for future applications