research

Framework for state and unknown input estimation of linear time-varying systems

Abstract

The design of unknown-input decoupled observers and filters requires the assumption of an existence condition in the literature. This paper addresses an unknown input filtering problem where the existence condition is not satisfied. Instead of designing a traditional unknown input decoupled filter, a Double-Model Adaptive Estimation approach is extended to solve the unknown input filtering problem. It is proved that the state and the unknown inputs can be estimated and decoupled using the extended Double-Model Adaptive Estimation approach without satisfying the existence condition. Numerical examples are presented in which the performance of the proposed approach is compared to methods from literature.Comment: This paper has been accepted by Automatica. It considers unknown input estimation or fault and disturbances estimation. Existing approaches considers the case where the effects of fault and disturbance can be decoupled. In our paper, we consider the case where the effects of fault and disturbance are coupled. This approach can be easily extended to nonlinear system

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 30/03/2019