12 research outputs found

    What drives ontogenetic niche shifts of fishes in coral reef ecosystems?

    Get PDF
    Ontogenetic niche shifts are taxonomically and ecologically widespread across the globe. Consequently, identifying the ecological mechanics that promote these shifts at diverse scales is central to an improved understanding of ecosystems generally. We evaluated multiple potential drivers of ontogenetic niche shifts (predation, growth, maturation, diet shifts, and food availability) for three fish species between connected coral reef and nearshore habitats. In all cases, neither diet compositional change nor sexual maturity functioned as apparent triggers for emigration from juvenile to adult habitats. Rather, the fitness advantages conferred on reef inhabitants (that is, enhanced growth rates) were primarily related to high prey availability on reefs. However, there exists a clear trade-off to this benefit as survival rates for small fishes were significantly reduced on reefs, thereby revealing the potential value of (and rationale behind high juvenile abundances in) nearshore habitat as predation refugia. We ultimately conclude that predation risk functions as the primary early life stage inhibitor of ontogenetic niche shifts towards more profitable adult habitats in these systems. Furthermore, this study provides a case study for how complex, meta-dynamic populations and ecosystems might be better understood through the elucidation of simple ecological trade-offs.I. A. Kimirei, I. Nagelkerken, M. Trommelen, P. Blankers, N. van Hoytema, D. Hoeijmakers, C. M. Huijbers, Y. D. Mgaya, and A. L. Rype

    The elusive case of human intraepithelial T cells in gut homeostasis and inflammation

    No full text
    The epithelial barrier of the gastrointestinal tract is home to numerous intraepithelial T cells (IETs). IETs are functionally adapted to the mucosal environment and are among the first adaptive immune cells to encounter microbial and dietary antigens. They possess hallmark features of tissue-resident T cells: they are long-lived nonmigratory cells capable of rapidly responding to antigen challenges independent of T cell recruitment from the periphery. Gut-resident T cells have been implicated in the relapsing and remitting course and persisting low-grade inflammation of chronic gastrointestinal diseases, including IBD and coeliac disease. So far, most data IETs have been derived from experimental animal models; however, IETs and the environmental makeup differ between mice and humans. With advances in techniques, the number of human studies has grown exponentially in the past 5 years. Here, we review the literature on the involvement of human IETs in gut homeostasis and inflammation, and how these cells are influenced by the microbiota and dietary antigens. Finally, targeting of IETs in therapeutic interventions is discussed. Broad insight into the function and role of human IETs in gut homeostasis and inflammation is essential to identify future diagnostic, prognostic and therapeutic strategies
    corecore