4,899 research outputs found
Manifestation of quantum chaos on scattering techniques: application to low-energy and photo-electron diffraction intensities
Intensities of LEED and PED are analyzed from a statistical point of view.
The probability distribution is compared with a Porter-Thomas law,
characteristic of a chaotic quantum system. The agreement obtained is
understood in terms of analogies between simple models and Berry's conjecture
for a typical wavefunction of a chaotic system. The consequences of this
behaviour on surface structural analysis are qualitatively discussed by looking
at the behaviour of standard correlation factors.Comment: 5 pages, 4 postscript figures, Latex, APS,
http://www.icmm.csic.es/Pandres/pedro.ht
Impediments to mixing classical and quantum dynamics
The dynamics of systems composed of a classical sector plus a quantum sector
is studied. We show that, even in the simplest cases, (i) the existence of a
consistent canonical description for such mixed systems is incompatible with
very basic requirements related to the time evolution of the two sectors when
they are decoupled. (ii) The classical sector cannot inherit quantum
fluctuations from the quantum sector. And, (iii) a coupling among the two
sectors is incompatible with the requirement of physical positivity of the
theory, i.e., there would be positive observables with a non positive
expectation value.Comment: RevTex, 21 pages. Title slightly modified and summary section adde
Dirac versus Reduced Quantization of the Poincar\'{e} Symmetry in Scalar Electrodynamics
The generators of the Poincar\'{e} symmetry of scalar electrodynamics are
quantized in the functional Schr\"{o}dinger representation. We show that the
factor ordering which corresponds to (minimal) Dirac quantization preserves the
Poincar\'{e} algebra, but (minimal) reduced quantization does not. In the
latter, there is a van Hove anomaly in the boost-boost commutator, which we
evaluate explicitly to lowest order in a heat kernel expansion using zeta
function regularization. We illuminate the crucial role played by the gauge
orbit volume element in the analysis. Our results demonstrate that preservation
of extra symmetries at the quantum level is sometimes a useful criterion to
select between inequivalent, but nevertheless self-consistent, quantization
schemes.Comment: 24 page
Van der Waals loops and the melting transition in two dimensions
Evidence for the existence of van der Waals loops in pressure p versus volume
v plots has for some time supported the belief that melting in two dimensions
is a first order phase transition. We report rather accurate equilibrium p(v)
curves for systems of hard disks obtained from long Monte Carlo simulations.
These curves, obtained in the constant volume ensemble, using periodic boundary
conditions, exhibit well defined van der Waals loops. We illustrate their
existence for finite systems that are known to undergo a continuous transition
in the thermodynamic limit. To this end, we obtain magnetization m versus
applied field curves from Monte Carlo simulations of the 2D Ising model, in the
constant m ensemble, at the critical point. Whether van der Waals loops for
disk systems behave in the thermodynamic limit as they do for the 2D Ising
model at the critical point cannot be ruled out. Thus, the often made claim
that melting in 2D is a first order phase transition, based on the evidence
that van der Waals loops exist, is not sound.Comment: 10 pages, 6 Postscript figures (submitted to Phys.Rev.E). For related
work, see http://pipe.unizar.es/~jf
LEED Holography applied to a complex superstructure: a direct view of the adatom cluster on SiC(111)-(3x3)
For the example of the SiC(111)-(3x3) reconstruction we show that a
holographic interpretation of discrete Low Energy Electron Diffraction (LEED)
spot intensities arising from ordered, large unit cell superstructures can give
direct access to the local geometry of a cluster around an elevated atom,
provided there is only one such prominent atom per surface unit cell. By
comparing the holographic images obtained from experimental and calculated data
we illuminate validity, current limits and possible shortcomings of the method.
In particular, we show that periodic vacancies such as cornerholes may inhibit
the correct detection of the atomic positions. By contrast, the extra
diffraction intensity due to slight substrate reconstructions, as for example
buckling, seems to have negligible influence on the images. Due to the spatial
information depth of the method the stacking of the cluster can be imaged down
to the fourth layer. Finally, it is demonstrated how this structural knowledge
of the adcluster geometry can be used to guide the dynamical intensity analysis
subsequent to the holographic reconstruction and necessary to retrieve the full
unit cell structure.Comment: 11 pages RevTex, 6 figures, Phys. Rev. B in pres
Scalar density fluctuation at critical end point in NJL model
Soft mode near the critical end point in the phase diagram of two-flavor
Nambu--Jona-Lasinio (NJL) model is investigated within the leading 1/N_c
approximation with N_c being the number of the colors. It is explicitly shown
by studying the spectral function of the scalar channel that the relevant soft
mode is the scalar density fluctuation, which is coupled with the quark number
density, while the sigma meson mode stays massive.Comment: 9 pages, 4 figure
Renormalization: the observable-state model
The usual mathematical formalism of quantum field theory is non-rigorous
because it contains divergences that can only be renormalized by non-rigorous
mathematical methods. The purpose of this paper is to present a method of
subtraction of this divergences using the formalism of decoherence. This is
achieved by replacing the standard renormalization method by a projector on a
well defined Hilbert subspace. In this way a list of problems of the standard
formalism disappears while the physical results of QFT remains valid. From it
own nature, this formalism can be used in non-renormalizable theories.Comment: 23 page
Transition from a quark-gluon plasma in the presence of a sharp front
The effect of a sharp front separating the quark-gluon plasma phase from the
hadronic phase is investigated. Energy-momentum conservation and baryon number
conservation constrain the possible temperature jump across the front. If one
assumes that the temperature in the hadronic phase is 200 MeV , as
has been suggested by numerous results from relativistic ion collisions, one
can determine the corresponding temperature in the quark phase with the help of
continuity equations across the front. The calculations reveal that the quark
phase must be in a strongly supercooled state. The stability of this solution
with respect to minor modifications is investigated. In particular the effect
of an admixture of hadronic matter in the quark phase (e.g. in the form of
bubbles) is considered in detail. In the absence of admixture the transition
proceeds via a detonation transition and is accompanied by a substantial
super-cooling of the quark-gluon plasma phase. The detonation is accompanied by
less supercooling if a small fraction of bubbles is allowed. By increasing the
fraction of bubbles the supercooling becomes weaker and eventually the
transition proceeds via a smoother deflagration wave.Comment: 10 pages, manuscript in TeX, 9 figures available as Postscript files,
CERN-TH 6923/9
The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)
Static and dynamic changes induced by adsorption of atomic hydrogen on the
NiAl(110) lattice at 130 K have been examined as a function of adsorbate
coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages
the hydrogen is itinerant because of quantum tunneling between sites and
exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate
mediated interactions produce an ordered superstructure with c(2x2) symmetry,
and at higher coverages, hydrogen exists as a disordered lattice gas. This
picture of how hydrogen interacts with NiAl(110) is developed from our data and
compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference
Exponential behavior of a quantum system in a macroscopic medium
An exponential behavior at all times is derived for a solvable dynamical
model in the weak-coupling, macroscopic limit. Some implications for the
quantum measurement problem are discussed, in particular in connection with
dissipation.Comment: 8 pages, report BA-TH/94-17
- …