1,772 research outputs found

    The mass of X-Ray Nova Scorpii 1994 (=GRO J1655--40)]

    Get PDF
    We have obtained high and intermediate resolution optical spectra of the black-hole candidate Nova Sco 1994 in May/June 1998, when the source was in complete (X-ray) quiescence. We measure the radial velocity curve of the secondary star and obtain a semi-amplitude of K_2=215.5+/-2.4 km/s, which is 6 per cent lower than the only previously determined value. This new value for K_2 thus reduces the binary mass function to f(M) = 2.73+/-0.09 Mo. Using only the high resolution spectra we constrain the rotational broadening of the secondary star, vsini, to lie in the range 82.9-94.9 km/s (95 per cent confidence) and thus constrain the binary mass ratio to lie in the range 0.337--0.436 (95 per cent confidence). We can also combine our results with published limits for the binary inclination to constrain the mass of the compact object and secondary star to the ranges 5.5 -- 7.9 and 1.7 -- 3.3 Mo respectively (95 per cent confidence). Finally, we report on the detection of the Lithium resonance line at 6707.8 A, with an equivalent width of 55+/-8 mA.Comment: 5 pages, 5 figures, accepted by MNRA

    Development of a high-throughput microsatellite typing approach for forensic and population genetic analysis of wild and domestic African Bovini

    Get PDF
    Conservation management and forensic traceability of African buffalo and cattle rely on the timely provision of unbiased and accurate genetic information. An approach in which 17 cattle microsatellite markers are co-electrophoresed, following amplification in three core multiplex reactions was established for this purpose. Mean allelic richness per locus was 8.24 and 6.47, for buffalo and Bonsmara cattle, respectively, whilst an unbiased match probability of 6.5xĂ—10-17 and 1.03 Ă— 10-16 was obtained for each. These results confirm the usefulness of this rapid, cost-effective typing approach for forensic, paternity and fine-scale genetic analyses of wild and domestic African Bovini tribe member

    Numerical study of Yang-Mills classical solutions on the twisted torus

    Full text link
    We use the lattice cooling method to investigate the structure of some gauge fixed SU(2) Yang-Mills classical solutions of the euclidean equations of motion which are defined in the 3-torus with symmetric twisted boundary conditions.Comment: 20pp (fig.included

    Observation of Goos-H\"{a}nchen shifts in metallic reflection

    Full text link
    We report the first observation of the Goos-Ha¨\rm \ddot{\textbf{a}}nchen shift of a light beam incident on a metal surface. This phenomenon is particularly interesting because the Goos-Ha¨\rm \ddot{\textbf{a}}nchen shift for pp polarized light in metals is negative and much bigger than the positive shift for ss polarized light. The experimental result for the measured shifts as a function of the angle of incidence is in excellent agreement with theoretical predictions. In an energy-flux interpretation, our measurement shows the existence of a backward energy flow at the bare metal surface when this is excited by a pp polarized beam of light.Comment: The parer was published on Optics Express. The new version is modified according to the reviewers suggestion

    Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry

    Get PDF
    Motivation: We recently published MS2LDA, a method for the decomposition of sets of molecular fragment data derived from large metabolomics experiments. To make the method more widely available to the community, here we present ms2lda.org, a web application that allows users to upload their data, run MS2LDA analyses and explore the results through interactive visualisations. Results: Ms2lda.org takes tandem mass spectrometry data in many standard formats and allows the user to infer the sets of fragment and neutral loss features that co-occur together (Mass2Motifs). As an alternative workflow, the user can also decompose a dataset onto predefined Mass2Motifs. This is accomplished through the web interface or programmatically from our web service

    Four dimensional R^4 superinvariants through gauge completion

    Full text link
    We fully compute the N=1 supersymmetrization of the fourth power of the Weyl tensor in d=4 x-space with the auxiliary fields. In a previous paper, we showed that their elimination requires an infinite number of terms; we explicitely compute those terms to order \kappa^4 (three loop). We also write, in superspace notation, all the possible N=1 actions, in four dimensions, that contain pure R^4 terms (with coupling constants). We explicitely write these actions in terms of the \theta components of the chiral density \epsilon and the supergravity superfields R, G_m, W_{ABC}. Using the method of gauge completion, we compute the necessary \theta components which allow us to write these actions in x-space. We discuss under which circumstances can these extra R^4 correction terms be reabsorbed in the pure supergravity action, and their relevance to the quantum supergravity/string theory effective actions.Comment: 20 pages, no figures. Sec. 3 clarified; typos correcte

    Probing for Instanton Quarks with epsilon-Cooling

    Full text link
    We use epsilon-cooling, adjusting at will the order a^2 corrections to the lattice action, to study the parameter space of instantons in the background of non-trivial holonomy and to determine the presence and nature of constituents with fractional topological charge at finite and zero temperature for SU(2). As an additional tool, zero temperature configurations were generated from those at finite temperature with well-separated constituents. This is achieved by "adiabatically" adjusting the anisotropic coupling used to implement finite temperature on a symmetric lattice. The action and topological charge density, as well as the Polyakov loop and chiral zero-modes are used to analyse these configurations. We also show how cooling histories themselves can reveal the presence of constituents with fractional topological charge. We comment on the interpretation of recent fermion zero-mode studies for thermalized ensembles at small temperatures.Comment: 26 pages, 14 figures in 33 part

    A class of elementary particle models without any adjustable real parameters

    Get PDF
    Conventional particle theories such as the Standard Model have a number of freely adjustable coupling constants and mass parameters, depending on the symmetry algebra of the local gauge group and the representations chosen for the spinor and scalar fields. There seems to be no physical principle to determine these parameters as long as they stay within certain domains dictated by the renormalization group. Here however, reasons are given to demand that, when gravity is coupled to the system, local conformal invariance should be a spontaneously broken exact symmetry. The argument has to do with the requirement that black holes obey a complementarity principle relating ingoing observers to outside observers, or equivalently, initial states to final states. This condition fixes all parameters, including masses and the cosmological constant. We suspect that only examples can be found where these are all of order one in Planck units, but the values depend on the algebra chosen. This paper combines findings reported in two previous preprints, and puts these in a clearer perspective by shifting the emphasis towards the implications for particle models.Comment: 28 pages (incl. title page), no figure

    On the stability of Dirac sheet configurations

    Full text link
    Using cooling for SU(2) lattice configurations, purely Abelian constant magnetic field configurations were left over after the annihilation of constituents that formed metastable Q=0 configurations. These so-called Dirac sheet configurations were found to be stable if emerging from the confined phase, close to the deconfinement phase transition, provided their Polyakov loop was sufficiently non-trivial. Here we show how this is related to the notion of marginal stability of the appropriate constant magnetic field configurations. We find a perfect agreement between the analytic prediction for the dependence of stability on the value of the Polyakov loop (the holonomy) in a finite volume and the numerical results studied on a finite lattice in the context of the Dirac sheet configurations
    • …
    corecore