208 research outputs found

    Treewidth: Computational Experiments.

    Get PDF
    Many NP-complete graph problems can be solved in polynomial time for graphs with bounded treewidth. Equivalent results are known for pathwidth and branchwidth. In recent years, several studies have shown that this result is not only of theoretical interest but can successfully be applied to find (almost) optimal solutions or lower bounds for diverse optimization problems. To apply a tree decomposition approach, the treewidth of the graph has to be determined, independently of the application at hand. Although for fixed k, linear time algorithms exist to solve the decision problem ``treewidth at most k, their practical use is very limited. The computational tractability of treewidth has been rarely studied so far. In this paper, we compare four heuristics and two lower bounds for instances from applications such as the frequency assignment problem and the vertex coloring problem. Three of the heuristics are based on well-known algorithms to recognize triangulated graphs. The fourth heuristic recursively improves a tree decomposition by the computation of minimal separating vertex sets in subgraphs. Lower bounds can be computed from maximal cliques and the minimum degree of induced subgraphs. A computational analysis shows that the treewidth of several graphs can be identified by these methods. For other graphs, however, more sophisticated techniques are necessary.operations research and management science;

    On the design of an energy-efficient low-latency integrated protocol for distributed mobile sensor networks

    Get PDF
    Self organizing, wireless sensors networks are an emergent and challenging technology that is attracting large attention in the sensing and monitoring community. Impressive progress has been done in recent years even if we need to assume that an optimal protocol for every kind of sensor network applications can not exist. As a result it is necessary to optimize the protocol for certain scenarios. In many applications for instance latency is a crucial factor in addition to energy consumption. MERLIN performs its best in such WSNs where there is the need to reduce the latency while ensuring that energy consumption is kept to a minimum. By means of that, the low latency characteristic of MERLIN can be used as a trade off to extend node lifetimes. The performance in terms of energy consumption and latency is optimized by acting on the slot length. MERLIN is designed specifically to integrate routing, MAC and localization protocols together. Furthermore it can support data queries which is a typical application for WSNs. The MERLIN protocol eliminates the necessity to have any explicit handshake mechanism among nodes. Furthermore, the reliability is improved using multiple path message propagation in combination with an overhearing mechanism. The protocol divides the network into subsets where nodes are grouped in time zones. As a result MERLIN also shows a good scalability by utilizing an appropriate scheduling mechanism in combination with a contention period

    A branch-and-cut approach for solving line planning problems

    Get PDF
    An important strategic element in the planning process of a railway operator is the development of a line plan, i.e., a set of routes (paths) in a network of tracks, operated at a given hourly frequency. We consider a model formulation of the line planning problem where total operating costs are to be minimized. This model is solved with a branch-and-cut approach, for which we develop a variety of valid inequalities and reduction methods. A computational study of five real-life instances is included.operations research and management science;

    Immunoliposome-mediated targeting of doxorubicin to human ovarian carcinoma in vitro and in vivo.

    Get PDF
    This paper deals with the utility of immunoliposomes for the delivery of doxorubicin (DXR) to human ovarian carcinoma cells in vitro and in vivo. We aimed to investigate whether immunoliposome-mediated targeting of DXR to ovarian cancer cells translates in an enhanced anti-tumour effect compared with that of non-targeted DXR liposomes (lacking the specific antibody). Target cell binding and anti-tumour activity of DXR immunoliposomes were studied in vitro and in vivo (xenograft model of ovarian carcinoma). In vitro we observed that target cell binding and cell growth inhibition of DXR immunoliposomes is superior to that of non-targeted DXR-liposomes. However, in vivo, despite the efficient target cell binding and good anti-tumour response of DXR-immunoliposomes, no difference in anti-tumour effect, compared with non-targeted DXR-liposomes, could be determined. The results indicate that premature DXR leakage from immunoliposomes occurring before the actual target cell binding and subsequent DXR association with the tumour cells, explains why no significant differences in anti-tumour activity between DXR-immunoliposomes and non-targeted DXR-liposomes were observed in vivo

    The Impact of Age on Outcome of Embryonal and Alveolar Rhabdomyosarcoma Patients.:A Multicenter Study

    Get PDF
    Background: The prognosis of rhabdomyosarcoma (RMS) in children and adolescents has improved since the introduction of multi-agent chemotherapy. However, outcome data of adults with RMS are scarce. This multicenter retrospective study investigated the effect of age on outcome of RMS. Patients and Methods: Data were collected from three Dutch University Medical Centers between 1977-2009. The effect of age and clinical prognostic factors on relapse-free and disease-specific survival (DSS) were analyzed. Results: Age as a continuous variable predicted poor survival in multivariate analysis. Five-year DSS was highest for non-metastatic embryonal RMS, followed by non-metastatic alveolar RMS and was poor in metastatic disease. Higher age correlated with unfavorable histological subtype (alveolar RMS) and with metastatic disease at presentation in embryonal RMS. In non-metastatic embryonal RMS and in all alveolar RMS, higher age was an adverse prognostic factor of outcome. Conclusion: This study indicates that age is a negative predictor of survival in patients with embryonal and alveolar RMS
    corecore