929 research outputs found

    Does Corticothalamic Feedback Control Cortical Velocity Tuning?

    Get PDF
    The thalamus is the major gate to the cortex and its contribution to cortical receptive field properties is well established. Cortical feedback to the thalamus is, in turn, the anatomically dominant input to relay cells, yet its influence on thalamic processing has been difficult to interpret. For an understanding of complex sensory processing, detailed concepts of the corticothalamic interplay need yet to be established. To study corticogeniculate processing in a model, we draw on various physiological and anatomical data concerning the intrinsic dynamics of geniculate relay neurons, the cortical influence on relay modes, lagged and nonlagged neurons, and the structure of visual cortical receptive fields. In extensive computer simulations we elaborate the novel hypothesis that the visual cortex controls via feedback the temporal response properties of geniculate relay cells in a way that alters the tuning of cortical cells for speed.Comment: 31 pages, 7 figure

    Phase diagrams of soluble multi-spin glass models

    Full text link
    We include p-spin interactions in a spherical version of a soluble mean-field spin-glass model proposed by van Hemmen. Due to the simplicity of the solutions, which do not require the use of the replica trick, we are able to carry out a detailed investigation of a number of special situations. For p larger or equal to 3, there appear first-order transitions between the paramagnetic and the ordered phases. In the presence of additional ferromagnetic interactions, we show that there is no stable mixed phase, with both ferromagnetic and spin-glass properties.Comment: To appear in Physica

    Temporal Map Formation in the Barn Owl’s Brain

    Get PDF
    Barn owls provide an experimentally well-specified example of a temporal map, a neuronal representation of the outside world in the brain by means of time. Their laminar nucleus exhibits a place code of interaural time differences, a cue which is used to determine the azimuthal location of a sound stimulus, e.g., prey. We analyze a model of synaptic plasticity that explains the formation of such a representation in the young bird and show how in a large parameter regime a combination of local and nonlocal synaptic plasticity yields the temporal map as found experimentally. Our analysis includes the effect of nonlinearities as well as the influence of neuronal noise
    • …
    corecore