The thalamus is the major gate to the cortex and its contribution to cortical
receptive field properties is well established. Cortical feedback to the
thalamus is, in turn, the anatomically dominant input to relay cells, yet its
influence on thalamic processing has been difficult to interpret. For an
understanding of complex sensory processing, detailed concepts of the
corticothalamic interplay need yet to be established. To study
corticogeniculate processing in a model, we draw on various physiological and
anatomical data concerning the intrinsic dynamics of geniculate relay neurons,
the cortical influence on relay modes, lagged and nonlagged neurons, and the
structure of visual cortical receptive fields. In extensive computer
simulations we elaborate the novel hypothesis that the visual cortex controls
via feedback the temporal response properties of geniculate relay cells in a
way that alters the tuning of cortical cells for speed.Comment: 31 pages, 7 figure