42 research outputs found

    A comparison of in vivo 13C MR brain glycogen quantification at 9.4 and 14.1 T.

    Get PDF
    The high molecular weight and low concentration of brain glycogen render its noninvasive quantification challenging. Therefore, the precision increase of the quantification by localized (13) C MR at 9.4 to 14.1 T was investigated. Signal-to-noise ratio increased by 66%, slightly offset by a T(1) increase of 332 ± 15 to 521 ± 34 ms. Isotopic enrichment after long-term (13) C administration was comparable (≈ 40%) as was the nominal linewidth of glycogen C1 (≈ 50 Hz). Among the factors that contributed to the 66% observed increase in signal-to-noise ratio, the T(1) relaxation time impacted the effective signal-to-noise ratio by only 10% at a repetition time = 1 s. The signal-to-noise ratio increase together with the larger spectral dispersion at 14.1 T resulted in a better defined baseline, which allowed for more accurate fitting. Quantified glycogen concentrations were 5.8 ± 0.9 mM at 9.4 T and 6.0 ± 0.4 mM at 14.1 T; the decreased standard deviation demonstrates the compounded effect of increased magnetization and improved baseline on the precision of glycogen quantification

    A chemical shift encoding (CSE) approach for spectral selection in fluorine-19 MRI.

    Get PDF
    To develop a chemical shift encoding (CSE) approach for fluorine-19 MRI of perfluorocarbons in the presence of multiple known fluorinated chemical species. A multi-echo CSE technique is applied for spectral separation of the perfluorocarbon perfluoro-15-crown-5-ether (PFCE) and isoflurane (ISO) based on their chemical shifts at 4.7 T. Cramér-Rao lower bound analysis is used to identify echo combinations with optimal signal-to-noise performance. Signal contributions are fit with a multispectral fluorine signal model using a non-linear least squares estimation reconstruction directly from k-space data. This CSE approach is tested in fluorine-19 phantoms and in a mouse with a 2D and 3D spoiled gradient-echo acquisition using multiple echo times determined from Cramér-Rao lower bound analysis. Cramér-Rao lower bound analysis for PFCE and ISO separation shows signal-to-noise performance is maximized with a 0.33 ms echo separation. A linear behavior (R <sup>2</sup>  = 0.987) between PFCE signal and known relative PFCE volume is observed in CSE reconstructed images using a mixed PFCE/ISO phantom. Effective spatial and spectral separation of PFCE and ISO is shown in phantoms and in vivo. Feasibility of a gradient-echo CSE acquisition and image reconstruction approach with optimized noise performance is demonstrated through fluorine-19 MRI of PFCE with effective removal of ISO signal contributions. Magn Reson Med 79:2183-2189, 2018. © 2017 International Society for Magnetic Resonance in Medicine

    Fluorine-19 magnetic resonance angiography of the mouse.

    Get PDF
    PURPOSE: To implement and characterize a fluorine-19 ((19)F) magnetic resonance imaging (MRI) technique and to test the hypothesis that the (19)F MRI signal in steady state after intravenous injection of a perfluoro-15-crown-5 ether (PCE) emulsion may be exploited for angiography in a pre-clinical in vivo animal study. MATERIALS AND METHODS: In vitro at 9.4T, the detection limit of the PCE emulsion at a scan time of 10 min/slice was determined, after which the T(1) and T(2) of PCE in venous blood were measured. Permission from the local animal use committee was obtained for all animal experiments. 12 µl/g of PCE emulsion was intravenously injected in 11 mice. Gradient echo (1)H and (19)F images were obtained at identical anatomical levels. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined for 33 vessels in both the (19)F and (1)H images, which was followed by vessel tracking to determine the vessel conspicuity for both modalities. RESULTS: In vitro, the detection limit was ∼400 µM, while the (19)F T(1) and T(2) were 1350±40 and 25±2 ms. The (19)F MR angiograms selectively visualized the vasculature (and the liver parenchyma over time) while precisely coregistering with the (1)H images. Due to the lower SNR of (19)F compared to (1)H (17±8 vs. 83±49, p<0.001), the (19)F CNR was also lower at 15±8 vs. 52±35 (p<0.001). Vessel tracking demonstrated a significantly higher vessel sharpness in the (19)F images (66±11 vs. 56±12, p = 0.002). CONCLUSION: (19)F magnetic resonance angiography of intravenously administered perfluorocarbon emulsions is feasible for a selective and exclusive visualization of the vasculature in vivo

    A characterization of cardiac-induced noise in R2* maps of the brain.

    Get PDF
    Cardiac pulsation increases the noise level in brain maps of the transverse relaxation rate R <sub>2</sub> *. Cardiac-induced noise is challenging to mitigate during the acquisition of R <sub>2</sub> * mapping data because its characteristics are unknown. In this work, we aim to characterize cardiac-induced noise in brain maps of the MRI parameter R <sub>2</sub> *. We designed a sampling strategy to acquire multi-echo 3D data in 12 intervals of the cardiac cycle, monitored with a fingertip pulse-oximeter. We measured the amplitude of cardiac-induced noise in this data and assessed the effect of cardiac pulsation on R <sub>2</sub> * maps computed across echoes. The area of k-space that contains most of the cardiac-induced noise in R <sub>2</sub> * maps was then identified. Based on these characteristics, we introduced a tentative sampling strategy that aims to mitigate cardiac-induced noise in R <sub>2</sub> * maps of the brain. In inferior brain regions, cardiac pulsation accounts for R <sub>2</sub> * variations of up to 3 s <sup>-1</sup> across the cardiac cycle (i.e., ∼35% of the overall variability). Cardiac-induced fluctuations occur throughout the cardiac cycle, with a reduced intensity during the first quarter of the cycle. A total of 50% to 60% of the overall cardiac-induced noise is localized near the k-space center (k < 0.074 mm <sup>-1</sup> ). The tentative cardiac noise mitigation strategy reduced the variability of R <sub>2</sub> * maps across repetitions by 11% in the brainstem and 6% across the whole brain. We provide a characterization of cardiac-induced noise in brain R <sub>2</sub> * maps that can be used as a basis for the design of mitigation strategies during data acquisition

    Quantification of brain glycogen concentration and turnover through localized 13C NMR of both the C1 and C6 resonances.

    Get PDF
    We have recently shown that at isotopic steady state (13)C NMR can provide a direct measurement of glycogen concentration changes, but that the turnover of glycogen was not accessible with this protocol. The aim of the present study was to design, implement and apply a novel dual-tracer infusion protocol to simultaneously measure glycogen concentration and turnover. After reaching isotopic steady state for glycogen C1 using [1-(13)C] glucose administration, [1,6-(13)C(2)] glucose was infused such that isotopic steady state was maintained at the C1 position, but the C6 position reflected (13)C label incorporation. To overcome the large chemical shift displacement error between the C1 and C6 resonances of glycogen, we implemented 2D gradient based localization using the Fourier series window approach, in conjunction with time-domain analysis of the resulting FIDs using jMRUI. The glycogen concentration of 5.1 +/- 1.6 mM measured from the C1 position was in excellent agreement with concomitant biochemical determinations. Glycogen turnover measured from the rate of label incorporation into the C6 position of glycogen in the alpha-chloralose anesthetized rat was 0.7 micromol/g/h

    Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla.

    Get PDF
    To characterize and optimize javax.xml.bind.JAXBElement@7524a985 F MRI for different perfluorocarbons (PFCs) at 3T and quantify the loss of acquisition efficiency as a function of different temperature and cellular conditions. The T javax.xml.bind.JAXBElement@1ef4ca84 and T javax.xml.bind.JAXBElement@295b7e6f relaxation times of the commonly used PFCs perfluoropolyether (PFPE), perfluoro-15-crown-5-ether (PFCE), and perfluorooctyl bromide (PFOB) were measured in phantoms and in several different conditions (cell types, presence of fixation agent, and temperatures). These relaxation times were used to optimize pulse sequences through numerical simulations. The acquisition efficiency in each cellular condition was then determined as the ratio of the signal after optimization with the reference relaxation times and after optimization with its proper relaxation times. Finally, PFC detection limits were determined. The loss of acquisition efficiency due to parameter settings optimized for the wrong temperature and cellular condition was limited to 13%. The detection limits of all PFCs were lower at 24 °C than at 37 °C and varied from 11.8 ± 3.0 mM for PFCE at 24 °C to 379.9 ± 51.8 mM for PFOB at 37 °C. Optimizing javax.xml.bind.JAXBElement@30187e57 F pulse sequences with a known phantom only leads to moderate loss in acquisition efficiency in cellular conditions that might be encountered in in vivo and in vitro experiments. Magn Reson Med 77:2263-2271, 2017. © 2016 International Society for Magnetic Resonance in Medicine

    Three-Dimensional Self-Navigated T2 Mapping for the Detection of Acute Cellular Rejection After Orthotopic Heart Transplantation.

    Get PDF
    T2 mapping is a magnetic resonance imaging technique measuring T2 relaxation time, which increases with the myocardial tissue water content. Myocardial edema is a component of acute cellular rejection (ACR) after heart transplantation. This pilot study compares in heart transplantation recipients a novel high resolution 3-dimensional (3D) T2-mapping technique with standard 2-dimensional (2D) T2-mapping for ACR detection. Consecutive asymptomatic patients (n = 26) underwent both 3D T2 mapping and reference 2D T2 mapping magnetic resonance imaging on the day of endomyocardial biopsy (EMB). 3D T2 maps were obtained at an isotropic spatial resolution of 1.72 mm (voxel volume 5.1 mm(3)). 2D and 3D maps were matched anatomically, and maximum segmental T2 values were compared blinded to EMB results. In addition, all 3D T2 maps were rendered as 3D images and inspected for foci of T2 elevation. T2 values of segments from 2D and reformatted 3D T2 maps agreed (p > 0.5). The highest 2D segmental T2 values were 49.9 ± 4.0 ms (no ACR = 0R, n = 18), 48.9 ± 0.8 ms (mild ACR = 1R, n = 3), and 65.0 ms (moderate ACR = 2R). Rendered 3D T2 maps of cases with 1R showed foci with significantly elevated T2 signal (T2 = 58.2 ± 3.6 ms); 5 cases (28%) in the 0R group showed foci with increased T2 values (>2 SD above adjacent tissue) that were not visible on the 2D T2 maps. This pilot study in a small cohort suggests equivalency of standard segmental analysis between 3D and 2D T2-mapping. 3D T2 mapping provides a spatial resolution that permits detection of foci with elevated T2 in patients with mild ACR

    Fluorine MR Imaging of Inflammation in Atherosclerotic Plaque in Vivo.

    Get PDF
    PURPOSE: To preliminarily test the hypothesis that fluorine 19 ((19)F) magnetic resonance (MR) imaging enables the noninvasive in vivo identification of plaque inflammation in a mouse model of atherosclerosis, with histologic findings as the reference standard. MATERIALS AND METHODS: The animal studies were approved by the local animal ethics committee. Perfluorocarbon (PFC) emulsions were injected intravenously in a mouse model of atherosclerosis (n = 13), after which (19)F and anatomic MR imaging were performed at the level of the thoracic aorta and its branches at 9.4 T. Four of these animals were imaged repeatedly (at 2-14 days) to determine the optimal detection time. Repeated-measures analysis of variance with a Tukey test was applied to determine if there was a significant change in (19)F signal-to-noise ratio (SNR) of the plaques and liver between the time points. Six animals were injected with a PFC emulsion that also contained a fluorophore. As a control against false-positive results, wild-type mice (n = 3) were injected with a PFC emulsion, and atherosclerotic mice were injected with a saline solution (n = 2). The animals were sacrificed after the last MR imaging examination, after which high-spatial-resolution ex vivo MR imaging and bright-field and immunofluorescent histologic examination were performed. RESULTS: (19)F MR signal was detected in vivo in plaques in the aortic arch and its branches. The SNR was found to significantly increase up to day 6 (P < .001), and the SNR of all mice at this time point was 13.4 ± 3.3. The presence of PFC and plaque in the excised vessels was then confirmed both through ex vivo (19)F MR imaging and histologic examination, while no signal was detected in the control animals. Immunofluorescent histologic findings confirmed the presence of PFC in plaque macrophages. CONCLUSION: (19)F MR imaging allows the noninvasive in vivo detection of inflammation in atherosclerotic plaques in a mouse model of atherosclerosis and opens up new avenues for both the early detection of vulnerable atherosclerosis and the elucidation of inflammation mechanisms in atherosclerosis

    Assessment of myocardial injuries in ischemic and non-ischemic cardiomyopathies using magnetic resonance T1-rho mapping.

    Get PDF
    To identify clinical correlates of myocardial T1ρ and to examine how myocardial T1ρ values change under various clinical scenarios. A total of 66 patients (26% female, median age 57 years [Q1-Q3, 44-65 years]) with known structural heart disease and 44 controls (50% female, median age 47 years [28-57 years]) underwent cardiac magnetic resonance imaging at 1.5-T, including T1ρ mapping, T2 mapping, native T1 mapping, late gadolinium enhancement, and ECV imaging.In controls, T1ρ positively related with T2 (P=0.038) and increased from basal to apical levels (P<0.001). As compared to controls and remote myocardium, T1ρ significantly increased in all patients' sub-groups and all types of myocardial injuries: acute and chronic injuries, focal and diffuse tissue abnormalities, as well as ischemic and non-ischemic aetiologies (P<0.05). T1ρ was independently associated with T2 in patients with acute injuries (P=0.004) and with native T1 and ECV in patients with chronic injuries (P<0.05). Myocardial T1ρ mapping demonstrated good intra- and interobserver reproducibility (ICC=0.86 and 0.83, respectively). Myocardial T1ρ mapping appears to be reproducible and equally sensitive to acute and chronic myocardial injuries, whether of ischemic or non-ischemic origins. It may thus be a contrast-agent-free biomarker for gaining new and quantitative insight into myocardial structural disorders. These findings highlight the need for further studies through prospective and randomized trials
    corecore