59 research outputs found

    Role of GATA Transcription Factors in the T Cell Lineage

    Get PDF
    T lymphocytes play a central role in the mammalian immune response against potentially hazardous pathogens, such as parasites, bacteria, viruses and fungi. These cells have the remarkable capacity to specifically recognize foreign substances, termed antigens, to which they respond by clonal amplification and cellular differentiation, conferring lifelong protective immunity to reinfection with the same pathogen. T lymphocytes express an antigen-specific receptor, called the T cell receptor (TCR), which recognizes peptide fragments derived from foreign proteins or pathogens that have entered into host cells. Defective T cell development and function can result in increased susceptibility to infections or even development of leukemias, allergies and autoimmune diseases. On the other hand, T lymphocytes can be manipulated to eradicate tumor and control graft rejection after organ transplantation. Therefore, in addition to biological interest, knowledge on T cell biology is important for understanding the etiology of a wide variety of diseases and potentially improves current therapies

    Interleukin-23 is critical for full-blown expression of a non-autoimmune destructive arthritis and regulates interleukin-17A and RORγt in γδ T cells

    Get PDF
    Introduction: Interleukin (IL)-23 is essential for the development of various experimental autoimmune models. However, the role of IL-23 in non-autoimmune experimental arthritis remains unclear. Here, we examined the role of IL-23 in the non-autoimmune antigen-induced arthritis (AIA) model. In addition, the regulatory potential of IL-23 in IL-17A and retinoic acid-related orphan receptor gamma t (RORγt) expression in CD4+and TCRγδ+T cells was evaluated systemically as well as at the site of inflammation.Methods: Antigen-induced arthritis was induced in wild-type, IL-23p19-deficient and IL-17 Receptor A - knockout mice. At differe

    CCR6+ Th cell populations distinguish ACPA positive from ACPA negative rheumatoid arthritis

    Get PDF
    Introduction: Patients with rheumatoid arthritis (RA) can be separated into two major subpopulations based on the absence or presence of serum anti-citrullinated protein antibodies (ACPAs). The more severe disease course in ACPA+ RA and differences in treatment outcome between these subpopulations suggest that ACPA+ and ACPA- RA are different disease subsets. The identification of T-helper (Th) cells specifically recognizing citrullinated peptides, combined with the strong association between HLA-DRB1 and ACPA positivity, point toward a pathogenic role of Th cells in ACPA+ RA. In this context we recently identified a potential pathogenic role for CCR6+ Th cells in RA. Therefore, we examined whether Th cell population distributions differ by ACPA status. Methods: We performed a nested matched case-control study including 27 ACPA+ and 27 ACPA- treatment-naive early RA patients matched for disease activity score in 44 joints, presence of rheumatoid factor, sex, age, duration of complaints and presence of erosions. CD4+CD45RO+ (memory) Th cell distribution profiles from these patients were generated based on differential chemokine receptor expression and related with disease duration. Results: ACPA status was not related to differences in total CD4+ T cell or memory Th cell proportions. However, ACPA+ patients had significantly higher proportions of Th cells expressing the chemokine receptors CCR6 and CXCR3. Similar proportions of CCR4+ and CCR10+ Th cells were found. Within the CCR6+ cell population, four Th subpopulations were distinguished based on differential chemokine receptor expression: Th17 (CCR4+CCR10-), Th17.1 (CXCR3+), Th22 (CCR4+CCR10+) and CCR4/CXCR3 double-positive (DP) cells. In particular, higher proportions of Th22 (p = 0.02), Th17.1 (p = 0.03) and CCR4/CXCR3 DP (p = 0.01) cells were present in ACPA+ patients. In contrast, ACPA status was not associated with differences in Th1 (CCR6-CXCR3+; p = 0.90), Th2 (CCR6-CCR4+; p = 0.27) and T-regulatory (CD25hiFOXP3+; p = 0.06) cell proportions. Interestingly, CCR6+ Th cells were inversely correlated with disease duration in ACPA- patients (R2 = -0.35; p < 0.01) but not in ACPA+ (R2 < 0.01; p = 0.94) patients. Conclusions: These findings demonstrate that increased peripheral blood CCR6+ Th cells proportions distinguish ACPA+ RA from ACPA- RA. This suggests that CCR6+ Th cells are involved in the differences in disease severity and tr

    GATA-2 Plays Two Functionally Distinct Roles during the Ontogeny of Hematopoietic Stem Cells

    Get PDF
    GATA-2 is an essential transcription factor in the hematopoietic system that is expressed in hematopoietic stem cells (HSCs) and progenitors. Complete deficiency of GATA-2 in the mouse leads to severe anemia and embryonic lethality. The role of GATA-2 and dosage effects of this transcription factor in HSC development within the embryo and adult are largely unexplored. Here we examined the effects of GATA-2 gene dosage on the generation and expansion of HSCs in several hematopoietic sites throughout mouse development. We show that a haploid dose of GATA-2 severely reduces production and expansion of HSCs specifically in the aorta-gonad-mesonephros region (which autonomously generates the first HSCs), whereas quantitative reduction of HSCs is minimal or unchanged in yolk sac, fetal liver, and adult bone marrow. However, HSCs in all these ontogenically distinct anatomical sites are qualitatively defective in serial or competitive transplantation assays. Also, cytotoxic drug-induced regeneration studies show a clear GATA-2 dose–related proliferation defect in adult bone marrow. Thus, GATA-2 plays at least two functionally distinct roles during ontogeny of HSCs: the production and expansion of HSCs in the aorta-gonad-mesonephros and the proliferation of HSCs in the adult bone marrow

    Human memory Th17 cell populations change into anti-inflammatory cells with regulatory capacity upon exposure to active Vitamin D

    Get PDF
    Autoimmune diseases are characterized by an aberrantly activated immune system, resulting in tissue damage and functional disability in patients. An important therapeutic goal is to restore the deregulated immunological balance between pro- A nd anti-inflammatory T cells. This imbalance is illustrated by elevated levels and activity of memory Th17 cell populations, such as Th17, Th1/Th17, and Th17.1 cells, in various autoimmune diseases. These cells are characterized by the chemokine receptor CCR6, RORC expression and production of IL-17A, IFNγ, and TNFα. Using rheumatoid arthritis (RA) as a model of autoimmune disease, we here demonstrate that pro-inflammatory memory CCR6+ Th cells can switch into anti-inflammatory cells with regulatory capacity using the active vitamin D metabolite 1,25(OH)2D3. Memory CCR6+ Th cells, excluding Tregs, were sorted from healthy controls or treatment-naive patients with early rheumatoid arthritis (RA) and cultured with or without 1,25(OH)2D3. Treatment with 1,25(OH)2D3 inhibited pro-inflammatory cytokines such as IL-17A, IL-17F, IL-22 and IFNγ in memory CCR6+ Th cells from both healthy controls and RA patients. This was accompanied by induction of anti-inflammatory factors, including IL-10 and CTLA4. Interestingly, these formerly pathogenic cells suppressed proliferation of autologous CD3+ T cells similar to classical Tregs. Importantly, the modulated memory cells still migrated toward inflammatory milieus in vitro, modeled by RA synovial fluid, and retained their suppressive capacity in this environment. These data show the potential to reset the pathogenic profile of human memory Th cells into non-pathogenic cells with regulatory capacity

    Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted Antigens

    Get PDF
    Expression of the Autoimmune regulator (AIRE) outside of the thymus has long been suggested in both humans and mice, but the cellular source in humans has remained undefined. Here we identify AIRE expression in human tonsils and extensively analyzed these “extra-thymic AIRE expressing cells” (eTACs) using combinations of flow cytometry, CyTOF and single cell RNA-sequencing. We identified AIRE+ cells as dendritic cells (DCs) with a mature and migratory phenotype including high levels of antigen presenting molecules and costimulatory molecules, and specific expression of CD127, CCR7, and PDL1. These cells also possessed the ability to stimulate and re-stimulate T cells and displayed reduced responses to toll-like receptor (TLR) agonists compared to conventional DCs. While expression of AIRE was enriched within CCR7+CD127+ DCs, single-cell RNA sequencing revealed expression of AIRE to be transient, rather than stable, and associated with the differentiation to a mature phenotype. The role of AIRE in central tolerance induction within the thymus is well-established, however our study shows that AIRE expression within the periphery is not associated with an enriched expression of tissue-restricted antigens (TRAs). This unexpected finding, suggestive of wider functions of AIRE, may provide an explanation for the non-autoimmune symptoms of APECED patients who lack functional AIRE

    T-helper 17 cell cytokines and interferon type I: Partners in crime in systemic lupus erythematosus?

    Get PDF
    Introduction: A hallmark of systemic autoimmune diseases like systemic lupus erythematosus (SLE) is the increased expression of interferon (IFN) type I inducible genes, so-called IFN type I signature. Recently, T-helper 17 subset (Th17 cells), which produces IL-17A, IL-17F, IL-21, and IL-22, has been implicated in SLE. As CCR6 enriches for Th17 cells, we used this approach to investigate whether CCR6+ memory T-helper cells producing IL-17A, IL-17F, IL-21, and/or IL-22 are increased in SLE patients and whether this increase is related to the presence of IFN type I signature.Methods: In total, 25 SLE patients and 15 healthy controls (HCs) were included. SLE patients were divided into IFN type I signature-positive (IFN+) (n = 16) and negative (IFN-) (n = 9) patients, as assessed by mRNA expression of IFN-inducible genes (IFIGs) in monocytes. Expression of IL-17A, IL-17F, IL-21, and IL-22 by CD4+CD45RO+CCR6+ T cells (CCR6+ cells) was measured with flow cytometry and compared between IFN+, IFN- patients and HCs.Results: Increased percentages of IL-17A and IL-17A/IL-17F double-producing CCR6+ cells were observed in IFN+ patients compared with IFN- patients and HCs. IL-17A and IL-17F expression within CCR6+ cells correlated significantly with IFIG expression. In addition, we found significant correlation between B-cell activating factor of the tumor necrosis family (BAFF)-a factor strongly correlating with IFN type I - and IL-21 producing CCR6+ cells.Conclusions: We show for the first time higher percentages of IL-17A and IL-17A/IL-17F double-producing CCR6+ memory T-helper cells in IFN+ SLE patients, supporting the hypothesis that IFN type I co-acts with Th17 cytokines in SLE pathogenesis

    Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted Antigens.

    Get PDF
    Expression of the Autoimmune regulator (AIRE) outside of the thymus has long been suggested in both humans and mice, but the cellular source in humans has remained undefined. Here we identify AIRE expression in human tonsils and extensively analyzed these "extra-thymic AIRE expressing cells" (eTACs) using combinations of flow cytometry, CyTOF and single cell RNA-sequencing. We identified AIRE+ cells as dendritic cells (DCs) with a mature and migratory phenotype including high levels of antigen presenting molecules and costimulatory molecules, and specific expression of CD127, CCR7, and PDL1. These cells also possessed the ability to stimulate and re-stimulate T cells and displayed reduced responses to toll-like receptor (TLR) agonists compared to conventional DCs. While expression of AIRE was enriched within CCR7+CD127+ DCs, single-cell RNA sequencing revealed expression of AIRE to be transient, rather than stable, and associated with the differentiation to a mature phenotype. The role of AIRE in central tolerance induction within the thymus is well-established, however our study shows that AIRE expression within the periphery is not associated with an enriched expression of tissue-restricted antigens (TRAs). This unexpected finding, suggestive of wider functions of AIRE, may provide an explanation for the non-autoimmune symptoms of APECED patients who lack functional AIRE.JF and HS were funded by project ERC-2013-ADG number 341038. MB was funded by EMBO ALTF 786-2013. BH was supported by the Netherlands Organization for Scientific Research (NWO) Veni program (91618032). LH, JpvH, and ST were supported by a grant from the Dutch Arthritis Foundation (2013_2_37). MM was supported by Wellcome Trust (grant105045/Z/14/Z). JM was supported by core funding from the European Molecular Biology Laboratory and from Cancer Research UK (award number 17197)

    Editorial for Special Issue "Advances in the Pathogenesis and Treatment of Immune-Mediated Inflammatory Diseases"

    No full text
    This Special Issue focuses on the rapidly evolving field of immune-mediated inflammatory diseases (IMIDs) and the achievements that were made over the last 10 years [...]
    corecore