56 research outputs found

    Promiscuity of the AlloHLA-A2 Restricted T Cell Repertoire Hampers the Generation of Minor Histocompatibility Antigen-specific Cytotoxic T Cells across HLA Barriers

    Get PDF
    AbstractHematopoietic system-specific miHAs are ideal targets for adoptive immunotherapy after allogeneic HLA (alloHLA)-matched SCT. Adoptive immunotherapy with cytotoxic T cells targeting hematopoietic system-specific miHAs restricted by alloHLA molecules is an attractive strategy to treat relapsed hematologic malignancies after HLA-mismatched SCT. As a proof of principle, we exploited 2 new strategies to generate alloHLA-A2-restricted miHA-specific T cells from HLA-A2neg donors using a HLA/miHA multimer-guided approach. In one strategy, autologous DCs coated with HLA-A2/miHA complexes were used for in vitro generation of miHA-specific T cells from HLA-A2neg male donors. In the other strategy, miHA-specific T cells were directly isolated from the peripheral blood of HLA-A2neg parous females with HLA-A2pos offspring. Both methods introduced recombinant HLA-A2/miHA complexes as the sole allogeneic target antigen. However, neither method yielded high avidity miHA-specific T cells or prevented the emergence of peptide-dependent promiscuous T cells. The latter T cells resembled miHA-specific T cells so closely with regard to tetramer binding and cytokine production that only extensive testing at a clonal level revealed their nonspecific nature. Therefore, promiscuity of the alloHLA-A2 T cell repertoire of HLA-A2neg individuals hampers in vitro generation of genuine miHA-specific T cells and limits its use for adoptive immunotherapy after HLA-A2 mismatched SCT

    In Situ Detection of HY-Specific T Cells in Acute Graft-versus-Host Disease–Affected Male Skin after Sex-Mismatched Stem Cell Transplantation

    Get PDF
    HY-specific T cells are presumed to play a role in acute graft-versus-host disease (aGVHD) after female-to-male stem cell transplantation (SCT). However, infiltrates of these T cells in aGVHD-affected tissues have not yet been reported. We evaluated the application of HLA-A2/HY dextramers for the in situ detection of HY-specific T cells in cryopreserved skin biopsy specimens. We applied the HLA-A2/HY dextramers on cryopreserved skin biopsy specimens from seven male HLA-A2+ pediatric patients who underwent stem cell transplantation with confirmed aGVHD involving the skin. The dextramers demonstrated the presence of HY-specific T cells. In skin biopsy specimens of three male recipients of female grafts, 68% to 78% of all skin-infiltrating CD8+ T cells were HY-specific, whereas these cells were absent in biopsy specimens collected from sex-matched patient–donor pairs. Although this study involved a small and heterogeneous patient group, our results strongly support the hypothesis that HY-specific T cells are actively involved in the pathophysiology of aGVHD after sex-mismatched stem cell transplantation

    A unique immune signature in blood separates therapy-refractory from therapy-responsive acute graft-versus-host disease

    Get PDF
    Acute graft-versus-host disease (aGVHD) is an immune cell‒driven, potentially lethal complication of allogeneic hematopoietic stem cell transplantation affecting diverse organs, including the skin, liver, and gastrointestinal (GI) tract. We applied mass cytometry (CyTOF) to dissect circulating myeloid and lymphoid cells in children with severe (grade III-IV) aGVHD treated with immune suppressive drugs alone (first-line therapy) or in combination with mesenchymal stromal cells (MSCs; second-line therapy). These results were compared with CyTOF data generated in children who underwent transplantation with no aGVHD or age-matched healthy control participants. Onset of aGVHD was associated with the appearance of CD11b+CD163+ myeloid cells in the blood and accumulation in the skin and GI tract. Distinct T-cell populations, including TCRγδ+ cells, expressing activation markers and chemokine receptors guiding homing to the skin and GI tract were found in the same blood samples. CXCR3+ T cells released inflammation-promoting factors after overnight stimulation. These results indicate that lymphoid and myeloid compartments are triggered at aGVHD onset. Immunoglobulin M (IgM) presumably class switched, plasmablasts, and 2 distinct CD11b– dendritic cell subsets were other prominent immune populations found early during the course of aGVHD in patients refractory to both first- and second-line (MSC-based) therapy. In these nonresponding patients, effector and regulatory T cells with skin- or gut-homing receptors also remained proportionally high over time, whereas their frequencies declined in therapy responders. Our results underscore the additive value of high-dimensional immune cell profiling for clinical response evaluation, which may assist timely decision-making in the management of severe aGVHD.</p

    Differential Elimination of Anti-Thymocyte Globulin of Fresenius and Genzyme Impacts T-Cell Reconstitution After Hematopoietic Stem Cell Transplantation

    Get PDF
    Anti-thymocyte globulin (ATG) is a lymphocyte depleting agent applied in hematopoietic stem cell transplantation (HSCT) to prevent rejection and Graft-vs.-Host Disease (GvHD). In this study, we compared two rabbit ATG products, ATG-Genzyme (ATG-GENZ), and ATG-Fresenius (ATG-FRES), with respect to dosing, clearance of the active lymphocyte binding component, post-HSCT immune reconstitution and clinical outcome. Fifty-eigth pediatric acute leukemia patients (n = 42 ATG-GENZ, n = 16 ATG-FRES), who received a non-depleted bone marrow or peripheral blood stem cell graft from an unrelated donor were included. ATG-GENZ was given at a dosage of 6–10 mg/kg; ATG-FRES at 45–60 mg/kg. The active component of ATG from both products was cleared at different rates. Within the ATG-FRES dose range no differences were found in clearance of active ATG or T-cell re-appearance. However, the high dosage of ATG-GENZ (10 mg/kg), in contrast to the low dosage (6–8 mg/kg), correlated with prolonged persistence of active ATG and delayed T-cell reconstitution. Occurrence of serious acute GvHD (grade III–IV) was highest in the ATG-GENZ-low dosage group. These results imply that dosing of ATG-GENZ is more critical than dosing of ATG-FRES due to the difference in clearance of active ATG. This should be taken into account when designing clinical protocols

    Apparent Lack of BRAFV600E Derived HLA Class I Presented Neoantigens Hampers Neoplastic Cell Targeting by CD8+ T Cells in Langerhans Cell Histiocytosis

    Get PDF
    Langerhans Cell Histiocytosis (LCH) is a neoplastic disorder of hematopoietic origin characterized by inflammatory lesions containing clonal histiocytes (LCH-cells) intermixed with various immune cells, including T cells. In 50-60% of LCH-patients, the somatic BRAFV600E driver mutation, which is common in many cancers, is detected in these LCH-cells in an otherwise quiet genomic landscape. Non-synonymous mutations like BRAFV600E can be a source of neoantigens capable of eliciting effective antitumor CD8+ T cell responses. This requires neopeptides to be stably presented by Human Leukocyte Antigen (HLA) class I molecules and sufficient numbers of CD8+ T cells at tumor sites. Here, we demonstrate substantial heterogeneity in CD8+ T cell density in n = 101 LCH-lesions, with BRAFV600E mutated lesions displaying significantly lower CD8+ T cell:CD1a+ LCH-cell ratios (p = 0.01) than BRAF wildtype lesions. Because LCH-lesional CD8+ T cell density had no significant impact on event-free survival, we investigated whether the intracellularly expressed BRAFV600E protein is degraded into neopeptides that are naturally processed and presented by cell surface HLA class I molecules. Epitope prediction tools revealed a single HLA class I binding BRAFV600E derived neopeptide (KIGDFGLATEK), which indeed displayed strong to intermediate binding capacity to HLA-A*03:01 and HLA-A*11:01 in an in vitro peptide-HLA binding assay. Mass spectrometry-based targeted peptidomics was used to investigate the presence of this neopeptide in HLA class I presented peptides isolated from several BRAFV600E expressing cell lines with various HLA genotypes. While the HLA-A*02:01 binding BRAF wildtype peptide KIGDFGLATV was traced in peptides isolated from a
    • …
    corecore