81 research outputs found
Comparing human and automatic thesaurus mapping approaches in the agricultural domain
Knowledge organization systems (KOS), like thesauri and other controlled
vocabularies, are used to provide subject access to information systems across
the web. Due to the heterogeneity of these systems, mapping between
vocabularies becomes crucial for retrieving relevant information. However,
mapping thesauri is a laborious task, and thus big efforts are being made to
automate the mapping process. This paper examines two mapping approaches
involving the agricultural thesaurus AGROVOC, one machine-created and one human
created. We are addressing the basic question "What are the pros and cons of
human and automatic mapping and how can they complement each other?" By
pointing out the difficulties in specific cases or groups of cases and grouping
the sample into simple and difficult types of mappings, we show the limitations
of current automatic methods and come up with some basic recommendations on
what approach to use when.Comment: 10 pages, Int'l Conf. on Dublin Core and Metadata Applications 200
Trusting Semi-structured Web Data
Abstract. The growth of the Web brings an uncountable amount of useful information to everybody who can access it. These data are often crowdsourced or provided by heterogenous or unknown sources, therefore they might be maliciously manipulated or unreliable. Moreover, because of their amount it is often impossible to extensively check them, and this gives rise to massive and ever growing trust issues. The research presented in this paper aims at investigating the use of data sources and reasoning techniques to address trust issues about Web data. In particular, these investigations include the use of trusted Web sources, of uncertainty reasoning, of semantic similarity measures and of provenance information as possible bases for trust estimation. The intended result of this thesis is a series of analyses and tools that allow to better understand and address the problem of trusting semi-structured Web data
A spatial column-store to triangulate the Netherlands on the fly
3D digital city models, important for urban planning, are currently constructed from massive point clouds obtained through airborne LiDAR (Light Detection and Ranging). They are semantically enriched with information obtained from auxiliary GIS data like Cadastral data which contains information about the boundaries of properties, road networks, rivers, lakes etc. Technical advances in the LiDAR data acquisition systems made possible the rapid acquisition of high resolution topographical information for an entire country. Such data sets are now reaching the trillion points barrier. To cope with this data deluge and provide up-to-date 3D digital city models on demand current geospatial management strategies should be re-thought. This work presents a column-oriented Spatial Database Management System which provides in-situ data access, effective data skipping, efficient spatial operations, and interactive data visualization. Its efficiency and scalability is demonstrated using a dense LiDAR scan of The Netherlands consisting of 640 billion points and the latest Cadastral information, and compared with PostGIS
MultiFarm: A benchmark for multilingual ontology matching
In this paper we present the MultiFarm dataset, which has been designed as a benchmark for multilingual
ontology matching. The MultiFarm dataset is composed of a set of ontologies translated in different
languages and the corresponding alignments between these ontologies. It is based on the OntoFarm dataset, which has been used successfully for several years in the Ontology Alignment Evaluation Initiative (OAEI). By translating the ontologies of the OntoFarm dataset into eight different languages – Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish – we created a comprehensive set of realistic test cases. Based on these test cases, it is possible to evaluate and compare the performance of matching approaches with a special focus on multilingualism
Results of the Ontology Alignment Evaluation Initiative 2007
euzenat2007gInternational audienceWe present the Ontology Alignment Evaluation Initiative 2007 campaign as well as its results. The OAEI campaign aims at comparing ontology matching systems on precisely defined test sets. OAEI-2007 builds over previous campaigns by having 4 tracks with 7 test sets followed by 17 participants. This is a major increase in the number of participants compared to the previous years. Also, the evaluation results demonstrate that more participants are at the forefront. The final and official results of the campaign are those published on the OAEI web site
Description of alignment evaluation and benchmarking results
shvaiko2007aNo abstract available
Description of alignment implementation and benchmarking results
stuckenschmidt2005aThis deliverable presents the evaluation campaign carried out in 2005 and the improvement participants to these campaign and others have to their systems. We draw lessons from this work and proposes improvements for future campaigns
- …