41 research outputs found

    Enhanced Bordetella pertussisacquisition rate in adolescents during the 2012 epidemic in the Netherlands and evidence for prolonged antibody persistence after infection.

    Get PDF
    IntroductionIn 2012 a large epidemic of pertussis occurred in the Netherlands. We assessed pertussis toxin (PT) antibody levels in longitudinal serum samples from Dutch 10-18 year-olds, encompassing the epidemic, to investigate pertussis infection incidence.Methods: Blood was sampled in October 2011 (n = 239 adolescents), then 1 year (2012; n = 228) and 3 years (2014; n = 167) later. PT-IgG concentrations were measured by immunoassay and concentrations ≥50 IU/mL (seropositive) assumed indicative of an infection within the preceding year.Results: During the 2012 epidemic, 10% of participants became seropositive, while this was just 3% after the epidemic. The pertussis acquisition rate proved to be sixfold higher during the epidemic (97 per 1,000 person-years) compared with 2012-2014 (16 per 1,000 person-years). In 2012, pertussis notifications among adolescents nationwide were 228/100,000 (0.23%), which is at least 40 times lower than the seropositivity percentage. Remarkably, 17 of the 22 seropositive participants in 2011, were still seropositive in 2012 and nine remained seropositive for at least 3 years.Discussion: Longitudinal studies allow a better estimation of pertussis infections in the population. A PT-IgG concentration ≥50 IU/mL as indication of recent infection may overestimate these numbers in cross-sectional serosurveillance and should be used carefully

    Robust Humoral and Cellular Immune Responses to Pertussis in Adults After a First Acellular Booster Vaccination

    Get PDF
    IntroductionTo reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age.MethodsIn 2014, healthy adults aged 25–29 years (n = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model.ResultsUpon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years.ConclusionThe Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy

    Immunity against Neisseria meningitidis Serogroup C in the Dutch Population before and after Introduction of the Meningococcal C Conjugate Vaccine

    Get PDF
    Contains fulltext : 88187.pdf (publisher's version ) (Open Access)BACKGROUND: In 2002 a Meningococcal serogroup C (MenC) conjugate vaccine, with tetanus toxoid as carrier protein, was introduced in the Netherlands as a single-dose at 14 months of age. A catch-up campaign was performed targeting all individuals aged 14 months to 18 years. We determined the MenC-specific immunity before and after introduction of the MenC conjugate (MenCC) vaccine. METHODS AND FINDINGS: Two cross-sectional population-based serum banks, collected in 1995/1996 (n = 8539) and in 2006/2007 (n = 6386), were used for this study. The main outcome measurements were the levels of MenC polysaccharide(PS)-specific IgG and serum bactericidal antibodies (SBA) after routine immunization, 4-5 years after catch-up immunization or by natural immunity. There was an increasing persistence of PS-specific IgG and SBA with age in the catch-up immunized cohorts 4-5 years after their MenCC immunization (MenC PS-specific IgG, 0.25 microg/ml (95%CI: 0.19-0.31 microg/ml) at age 6 years, gradually increasing to 2.34 microg/ml,(95%CI: 1.70-3.32 microg/ml) at age 21-22 years). A comparable pattern was found for antibodies against the carrier protein in children immunized above 9 years of age. In case of vaccination before the age of 5 years, PS-specific IgG was rapidly lost. For all age-cohorts together, SBA seroprevalence (> or =8) increased from 19.7% to 43.0% in the pre- and post-MenC introduction eras, respectively. In non-immunized adults the SBA seroprevalence was not significantly different between the pre- and post-MenC introduction periods, whereas PS-specific IgG was significantly lower in the post-MenC vaccination (GMT, age > or =25 years, 0.10 microg/ml) era compared to the pre-vaccination (GMT, age > or =25 years, 0.43 microg/ml) era. CONCLUSION: MenCC vaccination administered above 5 years of age induced high IgG levels compared to natural exposure, increasing with age. In children below 14 months of age and non-immunized cohorts lower IgG levels were observed compared to the pre-vaccination era, whereas functional levels remained similar in adults. Whether the lower IgG poses individuals at increased risk for MenC disease should be carefully monitored. Large-scale introduction of a MenCC vaccine has led to improved protection in adolescents, but in infants a single-dose schedule may not provide sufficient protection on the long-term and therefore a booster-dose early in adolescence should be considered

    Epitope Structure of the Bordetella pertussis Protein P.69 Pertactin, a Major Vaccine Component and Protective Antigen

    No full text
    Bordetella pertussis is reemerging in several countries with a traditionally high vaccine uptake. An analysis of clinical isolates revealed antigenic divergence between vaccine strains and circulating strains with respect to P.69 pertactin. Polymorphisms in P.69 pertactin are mainly limited to regions comprised of amino acid repeats, designated region 1 and region 2. Region 1 flanks the RGD motif, which is involved in adherence. Although antibodies against P.69 pertactin are implicated in protective immunity, little is known about the structure and location of its epitopes. Here we describe the identification by pepscan analysis of the locations of mainly linear epitopes recognized by human sera and mouse monoclonal antibodies (MAbs). A total of 24 epitopes were identified, and of these only 2 were recognized by both MAbs and human antibodies in serum. A number of immunodominant epitopes were identified which were recognized by 78 to 93% of the human sera tested. Blocking experiments indicated the presence of high-avidity human antibodies against conformational epitopes. Human antibodies against linear epitopes had much lower avidities, as they were unable to block MAbs. Pepscan analyses revealed several MAbs which bound to both region 1 and region 2. The two regions are separated by 289 amino acids in the primary structure, and we discuss the possibility that they form a single conformational epitope. Thus, both repeat regions may serve to deflect the immune response targeted to the functional domain of P.69 pertactin. This may explain why the variation in P.69 pertactin is so effective, despite the fact that it is limited to only two small segments of the molecule

    Association of Routine Infant Vaccinations With Antibody Levels Among Preterm Infants.

    No full text
    Importance: The standard schedule of national immunization programs for infants may not be sufficient to protect extremely and very preterm infants. Objective: To evaluate the immunogenicity of routine vaccinations administered to preterm infants. Design, Setting, and Participants: A multicenter, prospective, observational cohort study of preterm infants stratified according to gestational age recruited from 8 hospitals across the Netherlands between October 2015 and October 2017, with follow-up until 12 months of age (October 2018). In total, 296 premature infants were enrolled and compared with a control group of 66 healthy term infants from a 2011 study, immunized according to the same schedule with the same vaccines. Exposures: Three primary doses of the diphtheria-tetanus toxoids-acellular pertussis-inactivated poliomyelitis-Haemophilus influenza type b-hepatitis B combination vaccine were given at 2, 3, and 4 months after birth followed by a booster at 11 months and a 10-valent pneumococcal conjugate vaccine at 2, 4, and 11 months after birth. Main Outcomes and Measures: Primary end points were (1) proportion of preterm infants who achieved IgG antibody against vaccine antigens at concentrations above the internationally defined threshold for protection after the primary series and booster dose and (2) serum IgG geometric mean concentrations after the primary series and booster vaccination. Proportions and geometric mean concentrations were compared in preterm infants and the control group of term infants. Results: Of 296 preterm infants (56.1% male; mean gestational age, 30 weeks), complete samples before vaccination, 1 month after the primary series, and 1 month after the booster were obtained from 220 preterm infants (74.3%). After the primary series, the proportion of preterm infants across all gestational age groups who achieved protective IgG antibody levels against pertussis toxin, diphtheria, tetanus and 6 of 10 pneumococcal serotypes varied between 83.0% and 100%, Haemophilus influenzae type b between 34.7% and 46.2% (40.6% among all preterm infants overall), and pneumococcal serotypes 4, 6B, 18C, and 23F between 45.8% and 75.1%. After the booster dose, protective antibody levels were achieved in more than 95% of all preterm groups, except for Haemophilus influenzae type b (88.1%). In general, geometric mean concentrations of all vaccine-induced antibodies were significantly lower in all preterm infants vs term infants, except for pertussis toxin and pneumococcal serotypes 4 and 19F after the primary series and booster vaccination. Conclusions and Relevance: Among preterm infants, administration of routine vaccinations during the first year of life was associated with protective antibody levels against most antigens in the majority of infants after the primary series and booster, except for Haemophilus influenzae type b. However, antibody concentrations were generally lower among preterm infants compared with historical controls.

    Long-Term Immunogenicity upon Pertussis Booster Vaccination in Young Adults and Children in Relation to Priming Vaccinations in Infancy

    Get PDF
    Booster vaccinations for pertussis are advised in many countries during childhood or adulthood. In a phase IV longitudinal interventional study, we assessed long-term immunity following an extra pertussis booster vaccination in children and adults. Children (9 years of age) were primed in infancy with either the Dutch whole cell pertussis (wP) vaccine (n = 49) or acellular pertussis (aP) vaccines (n = 59), and all children received a preschool aP booster. Adults (25–29 years, n = 86) were wP-primed in infancy and did not receive a preschool booster. All were followed-up for approximately 6 years. After the additional booster, antibody responses to pertussis were more heterogeneous but generally higher in adults compared with children, and additional modelling showed that antibody concentrations remained higher for at least a decade. Serologic parameters indicative of recent pertussis infection were more often found in aP-primed children (12%) compared with wP-primed individuals (2%) (p = 0.052). This suggests that the aP booster vaccination in aP-primed children offers less long-term protection against pertussis infection and consequently against transmission. Together, these data show that aP priming in combination with aP boosting may not be sufficient to prevent circulation and transmission, while wP-primed adults may benefit from enhanced long-lasting immunity

    Robust Humoral and Cellular Immune Responses to Pertussis in Adults After a First Acellular Booster Vaccination

    No full text
    Introduction: To reduce the pertussis disease burden, nowadays several countries recommend acellular pertussis (aP) booster vaccinations for adults. We aimed to evaluate the immunogenicity of a first adult aP booster vaccination at childbearing age. Methods: In 2014, healthy adults aged 25–29 years (n = 105), vaccinated during infancy with four doses of whole-cell pertussis (wP) vaccine, received a Tdap (tetanus, diphtheria, and aP) booster vaccination. Blood samples were collected longitudinally pre-booster, 2 and 4 weeks, and 1 year and 2 years post-booster. Tdap vaccine antigen-specific antibody levels and memory B- and T-cell responses were determined at all time points. Antibody persistence was calculated using a bi-exponential decay model. Results: Upon booster vaccination, the IgG levels specific to all Tdap vaccine antigens were significantly increased. After an initial rapid decline in the first year, PT-IgG antibody decay was limited (15%) in the second year post-booster. The duration of a median level of PT-IgG ≥20 IU/mL was estimated to be approximately 9 years. Vaccine antigen-specific memory B- and T-cell numbers increased and remained at high levels although a significant decline was observed after 4 weeks post-booster. However, Th1, Th2, and Th17 cytokine production remained above pre-booster levels for 2 years. Conclusion: The Tdap booster vaccination in wP-primed Dutch adults induced robust long-term humoral and cellular immune responses to pertussis antigens. Furthermore, PT-IgG levels are predicted to remain above the presumed protective cut-off for at least 9 years which might deserves further attention in evaluating the current recommendation to revaccinate women during every new pregnancy

    Direct Comparison of Immunogenicity Induced by 10- or 13-Valent Pneumococcal Conjugate Vaccine around the 11-Month Booster in Dutch Infants

    Get PDF
    BACKGROUND & AIMS: Since 2009/10, a 10- and a 13-valent pneumococcal conjugate vaccine (PCV) are available, but only the 10-valent vaccine is now being used for the children in the Netherlands. As the vaccines differ in number of serotypes, antigen concentration, and carrier proteins this study was designed to directly compare quantity and quality of the antibody responses induced by PCV10 and PCV13 before and after the 11-month booster. METHODS: Dutch infants (n = 132) were immunized with either PCV10 or PCV13 and DTaP-IPV-Hib-HepB at the age of 2, 3, 4 and 11 months. Blood samples were collected pre-booster and post-booster at one week and one month post-booster for quantitative and qualitative immunogenicity against 13 pneumococcal serotypes, as well as quantitative immunogenicity against diphtheria, tetanus, pertussis and Haemophilus influenzae type b. We compared immunogenicity induced by PCV13 and PCV10 for their ten shared serotypes. RESULTS: One month post-booster, pneumococcal serotype-specific IgG geometric mean concentrations (GMCs) for the PCV13 group were higher compared with the PCV10 group for six serotypes, although avidity was lower. Serotype 19F showed the most distinct difference in IgG and, in contrast to other serotypes, its avidity was higher in the PCV13 group. One week post-booster, opsonophagocytosis for serotype 19F did not differ significantly between the PCV10- and the PCV13 group. CONCLUSION: Both PCV10 and PCV13 were immunogenic and induced a booster response. Compared to the PCV10 group, the PCV13 group showed higher levels for serotype 19F GMCs and avidity, pre- as well as post-booster, although opsonophagocytosis did not differ significantly between groups. In our study, avidity is not correlated to opsonophagocytotic activity (OPA) and correlations between IgG and OPA differ per serotype. Therefore, besides assays to determine IgG GMCs, assays to detect opsonophagocytotic activity, i.e., the actual killing of the pneumococcus, are important for PCV evaluation. How differences between the two vaccines relate to long-term protection requires further investigation. TRIAL REGISTRATION: www.trialregister.nl NTR3069
    corecore