29 research outputs found

    Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Get PDF
    BACKGROUND: Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. METHODS: Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours). Gene expression changes after short-term exposure (3 or 6 hours) to curcumin were also studied in a second cell type, Caco-2 cells. RESULTS: Gene expression changes (>1.5-fold) were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. CONCLUSIONS: This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase-II genes). Moreover, potential new leads to genes and pathways that could play a role in colon cancer prevention by curcumin were identified

    Effect of body fat distribution on the transcription response to dietary fat interventions

    Get PDF
    Combination of decreased energy expenditure and increased food intake results in fat accumulation either in the abdominal site (upper body obesity, UBO) or on the hips (lower body obesity, LBO). In this study, we used microarray gene expression profiling of adipose tissue biopsies to investigate the effect of body fat distribution on the physiological response to two dietary fat interventions. Mildly obese UBO and LBO male subjects (n = 12, waist-to-hip ratio range 0.93–1.12) were subjected to consumption of diets containing predominantly either long-chain fatty acids (PUFA) or medium-chain fatty acids (MCT). The results revealed (1) a large variation in transcription response to MCT and PUFA diets between UBO and LBO subjects, (2) higher sensitivity of UBO subjects to MCT/PUFA dietary intervention and (3) the upregulation of immune and apoptotic pathways and downregulation of metabolic pathways (oxidative, lipid, carbohydrate and amino acid metabolism) in UBO subjects when consuming MCT compared with PUFA diet. In conclusion, we report that despite the recommendation of MCT-based diet for improving obesity phenotype, this diet may have adverse effect on inflammatory and metabolic status of UBO subjects. The body fat distribution is, therefore, an important parameter to consider when providing personalized dietary recommendation

    Short-term fatty acid intervention elicits differential gene expression responses in adipose tissue from lean and overweight men

    Get PDF
    The goal of this study was to investigate the effect of a short-term nutritional intervention on gene expression in adipose tissue from lean and overweight subjects. Gene expression profiles were measured after consumption of an intervention spread (increased levels of polyunsaturated fatty acids, conjugated linoleic acid and medium chain triglycerides) and a control spread (40 g of fat daily) for 9 days. Adipose tissue gene expression profiles of lean and overweight subjects were distinctly different, mainly with respect to defense response and metabolism. The intervention resulted in lower expression of genes related to energy metabolism in lean subjects, whereas expression of inflammatory genes was down-regulated and expression of lipid metabolism genes was up-regulated in the majority of overweight subjects. Individual responses in overweight subjects were variable and these correlated better to waist–hip ratio and fat percentage than BMI

    Insight in modulation of inflammation in response to diclofenac intervention: a human intervention study

    Get PDF
    Background. Chronic systemic low-grade inflammation in obese subjects is associated with health complications including cardiovascular diseases, insulin resistance and diabetes. Reducing inflammatory responses may reduce these risks. However, available markers of inflammatory status inadequately describe the complexity of metabolic responses to mild anti-inflammatory therapy. Methods. To address this limitation, we used an integrative omics approach to characterize modulation of inflammation in overweight men during an intervention with the non-steroidal anti-inflammatory drug diclofenac. Measured parameters included 80 plasma proteins, >300 plasma metabolites (lipids, free fatty acids, oxylipids and polar compounds) and an array of peripheral blood mononuclear cells (PBMC) gene expression products. These measures were submitted to multivariate and correlation analysis and were used for construction of biological response networks. Results. A panel of genes, proteins and metabolites, including PGE2 and TNF-alpha, were identified that describe a diclofenac-response network (68 genes in PBMC, 1 plasma protein and 4 plasma metabolites). Novel candidate markers of inflammatory modulation included PBMC expression of annexin A1 and caspase 8, and the arachidonic acid metabolite 5,6-DHET. Conclusion. In this study the integrated analysis of a wide range of parameters allowed the development of a network of markers responding to inflammatory modulation, thereby providing insight into the complex process of inflammation and ways to assess changes in inflammatory status associated with obesity. Trial registration. The study is registered as NCT00221052 in clinicaltrials.gov database. © 2010 van Erk et al; licensee BioMed Central Ltd

    Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status

    Get PDF
    We introduce the metabolomics and proteomics based Postprandial Challenge Test (PCT) to quantify the postprandial response of multiple metabolic processes in humans in a standardized manner. The PCT comprised consumption of a standardized 500 ml dairy shake containing respectively 59, 30 and 12 energy percent lipids, carbohydrates and protein. During a 6 h time course after PCT 145 plasma metabolites, 79 proteins and 7 clinical chemistry parameters were quantified. Multiple processes related to metabolism, oxidation and inflammation reacted to the PCT, as demonstrated by changes of 106 metabolites, 31 proteins and 5 clinical chemistry parameters. The PCT was applied in a dietary intervention study to evaluate if the PCT would reveal additional metabolic changes compared to non-perturbed conditions. The study consisted of a 5-week intervention with a supplement mix of anti-inflammatory compounds in a crossover design with 36 overweight subjects. Of the 231 quantified parameters, 31 had different responses over time between treated and control groups, revealing differences in amino acid metabolism, oxidative stress, inflammation and endocrine metabolism. The results showed that the acute, short term metabolic responses to the PCT were different in subjects on the supplement mix compared to the controls. The PCT provided additional metabolic changes related to the dietary intervention not observed in non-perturbed conditions. Thus, a metabolomics based quantification of a standardized perturbation of metabolic homeostasis is more informative on metabolic status and subtle health effects induced by (dietary) interventions than quantification of the homeostatic situation

    High-protein and high-carbohydrate breakfasts differentially change the transcriptome of human blood cells

    No full text
    Background: Application of transcriptomics technology in human nutrition intervention studies would allow for genome-wide screening of the effects of specific diets or nutrients and result in biomarker profiles. Objective: The aim was to evaluate the potential of gene expression profiling in blood cells collected in a human intervention study that investigated the effect of a high-carbohydrate (HC) or a high-protein (HP) breakfast on satiety. Design: Blood samples were taken from 8 healthy men before and 2 h after consumption of an HP or an HC breakfast. Both breakfasts contained acetaminophen for measuring the gastric emptying rate. Analysis of the transcriptome data focused on the effects of the HP or HC breakfast and of acetaminophen on blood leukocyte gene expression profiles. Results: Breakfast consumption resulted in differentially expressed genes, 317 for the HC breakfast and 919 for the HP breakfast. Immune response and signal transduction, specifically T cell receptor signaling and nuclear transcription factor B signaling, were the overrepresented functional groups in the set of 141 genes that were differentially expressed in response to both breakfasts. Consumption of the HC breakfast resulted in differential expression of glycogen metabolism genes, and consumption of the HP breakfast resulted in differential expression of genes involved in protein biosynthesis. Conclusions: Gene expression changes in blood leukocytes corresponded with and may be related to the difference in macronutrient content of the breakfast, meal consumption as such, and acetaminophen exposure. This study illustrates the potential of gene expression profiling in blood to study the effects of dietary exposure in human intervention studies
    corecore