24 research outputs found

    Systematic Review and Meta-Analysis of Preterm Birth and Later Systolic Blood Pressure

    Get PDF
    Lower birth weight because of fetal growth restriction is associated with higher blood pressure later in life, but the extent to which preterm birth ( <37 completed weeks' gestation) or very low birth weight ( <1500 g) predicts higher blood pressure is less clear. We performed a systematic review of 27 observational studies that compared the resting or ambulatory systolic blood pressure or diagnosis of hypertension among children, adolescents, and adults born preterm or very low birth weight with those born at term. We performed a meta-analysis with the subset of 10 studies that reported the resting systolic blood pressure difference in millimeters of mercury with 95% CIs or SEs. We assessed methodologic quality with a modified Newcastle-Ottawa Scale. The 10 studies were composed of 1342 preterm or very low birth weight and 1738 term participants from 8 countries. The mean gestational age at birth of the preterm participants was 30.2 weeks (range: 28.8-34.1 weeks), birth weight was 1280 g (range: 1098-1958 g), and age at systolic blood pressure measurement was 17.8 years (range: 6.3-22.4 years). Former preterm or very low birth weight infants had higher systolic blood pressure than term infants (pooled estimate: 2.5 mm Hg [95% CI: 1.7-3.3 mm Hg]). For the 5 highest quality studies, the systolic blood pressure difference was slightly greater, at 3.8 mm Hg (95% CI: 2.6-5.0 mm Hg). We conclude that infants who are born preterm or very low birth weight have modestly higher systolic blood pressure later in life and may be at increased risk for developing hypertension and its sequela

    Dendritic Morphology Predicts Pattern Recognition Performance in Multi-compartmental Model Neurons with and without Active Conductances

    Get PDF
    This is an Open Access article published under the Creative Commons Attribution license CC BY 4.0 which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is citedIn this paper we examine how a neuron’s dendritic morphology can affect its pattern recognition performance. We use two different algorithms to systematically explore the space of dendritic morphologies: an algorithm that generates all possible dendritic trees with 22 terminal points, and one that creates representative samples of trees with 128 terminal points. Based on these trees, we construct multi-compartmental models. To assess the performance of the resulting neuronal models, we quantify their ability to discriminate learnt and novel input patterns. We find that the dendritic morphology does have a considerable effect on pattern recognition performance and that the neuronal performance is inversely correlated with the mean depth of the dendritic tree. The results also reveal that the asymmetry index of the dendritic tree does not correlate with the performance for the full range of tree morphologies. The performance of neurons with dendritic tapering is best predicted by the mean and variance of the electrotonic distance of their synapses to the soma. All relationships found for passive neuron models also hold, even in more accentuated form, for neurons with active membranesPeer reviewedFinal Published versio

    Antenatal allopurinol for reduction of birth asphyxia induced brain damage (ALLO-Trial); a randomized double blind placebo controlled multicenter study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypoxic-ischaemic encephalopathy is associated with development of cerebral palsy and cognitive disability later in life and is therefore one of the fundamental problems in perinatal medicine. The xanthine-oxidase inhibitor allopurinol reduces the formation of free radicals, thereby limiting the amount of hypoxia-reperfusion damage. In case of suspected intra-uterine hypoxia, both animal and human studies suggest that maternal administration of allopurinol immediately prior to delivery reduces hypoxic-ischaemic encephalopathy.</p> <p>Methods/Design</p> <p>The proposed trial is a randomized double blind placebo controlled multicenter study in pregnant women at term in whom the foetus is suspected of intra-uterine hypoxia.</p> <p>Allopurinol 500 mg IV or placebo will be administered antenatally to the pregnant woman when foetal hypoxia is suspected. Foetal distress is being diagnosed by the clinician as an abnormal or non-reassuring foetal heart rate trace, preferably accompanied by either significant ST-wave abnormalities (as detected by the STAN-monitor) or an abnormal foetal blood scalp sampling (pH < 7.20).</p> <p>Primary outcome measures are the amount of S100B (a marker for brain tissue damage) and the severity of oxidative stress (measured by isoprostane, neuroprostane, non protein bound iron and hypoxanthine), both measured in umbilical cord blood. Secondary outcome measures are neonatal mortality, serious composite neonatal morbidity and long-term neurological outcome. Furthermore pharmacokinetics and pharmacodynamics will be investigated.</p> <p>We expect an inclusion of 220 patients (110 per group) to be feasible in an inclusion period of two years. Given a suspected mean value of S100B of 1.05 ug/L (SD 0.37 ug/L) in the placebo group this trial has a power of 90% (alpha 0.05) to detect a mean value of S100B of 0.89 ug/L (SD 0.37 ug/L) in the 'allopurinol-treated' group (z-test<sub>2-sided</sub>). Analysis will be by intention to treat and it allows for one interim analysis.</p> <p>Discussion</p> <p>In this trial we aim to answer the question whether antenatal allopurinol administration reduces hypoxic-ischaemic encephalopathy in neonates exposed to foetal hypoxia.</p> <p>Trial registration number</p> <p>Clinical Trials, protocol registration system: NCT00189007</p

    Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells

    Get PDF
    Neurons display a wide range of intrinsic firing patterns. A particularly relevant pattern for neuronal signaling and synaptic plasticity is burst firing, the generation of clusters of action potentials with short interspike intervals. Besides ion-channel composition, dendritic morphology appears to be an important factor modulating firing pattern. However, the underlying mechanisms are poorly understood, and the impact of morphology on burst firing remains insufficiently known. Dendritic morphology is not fixed but can undergo significant changes in many pathological conditions. Using computational models of neocortical pyramidal cells, we here show that not only the total length of the apical dendrite but also the topological structure of its branching pattern markedly influences inter- and intraburst spike intervals and even determines whether or not a cell exhibits burst firing. We found that there is only a range of dendritic sizes that supports burst firing, and that this range is modulated by dendritic topology. Either reducing or enlarging the dendritic tree, or merely modifying its topological structure without changing total dendritic length, can transform a cell's firing pattern from bursting to tonic firing. Interestingly, the results are largely independent of whether the cells are stimulated by current injection at the soma or by synapses distributed over the dendritic tree. By means of a novel measure called mean electrotonic path length, we show that the influence of dendritic morphology on burst firing is attributable to the effect both dendritic size and dendritic topology have, not on somatic input conductance, but on the average spatial extent of the dendritic tree and the spatiotemporal dynamics of the dendritic membrane potential. Our results suggest that alterations in size or topology of pyramidal cell morphology, such as observed in Alzheimer's disease, mental retardation, epilepsy, and chronic stress, could change neuronal burst firing and thus ultimately affect information processing and cognition

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    ESCAP Expert Paper: New developments in the diagnosis and treatment of adolescent anorexia nervosa—a European perspective

    Get PDF

    Nutritional Intake, White Matter Integrity, and Neurodevelopment in Extremely Preterm Born Infants

    Get PDF
    Background: Determining optimal nutritional regimens in extremely preterm infants remains challenging. This study aimed to evaluate the effect of a new nutritional regimen and individual macronutrient intake on white matter integrity and neurodevelopmental outcome. Methods: Two retrospective cohorts of extremely preterm infants (gestational age &lt; 28 weeks) were included. Cohort B (n = 79) received a new nutritional regimen, with more rapidly increased, higher protein intake compared to cohort A (n = 99). Individual protein, lipid, and caloric intakes were calculated for the first 28 postnatal days. Diffusion tensor imaging was performed at term-equivalent age, and cognitive and motor development were evaluated at 2 years corrected age (CA) (Bayley-III-NL) and 5.9 years chronological age (WPPSI-III-NL, MABC-2-NL). Results: Compared to cohort A, infants in cohort B had significantly higher protein intake (3.4 g/kg/day vs. 2.7 g/kg/day) and higher fractional anisotropy (FA) in several white matter tracts but lower motor scores at 2 years CA (mean (SD) 103 (12) vs. 109 (12)). Higher protein intake was associated with higher FA and lower motor scores at 2 years CA (B = −6.7, p = 0.001). However, motor scores at 2 years CA were still within the normal range and differences were not sustained at 5.9 years. There were no significant associations with lipid or caloric intake. Conclusion: In extremely preterm born infants, postnatal protein intake seems important for white matter development but does not necessarily improve long-term cognitive and motor development
    corecore