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Abstract In this paper we examine how a neuron’s den-
dritic morphology can affect its pattern recognition perfor-
mance. We use two different algorithms to systematically
explore the space of dendritic morphologies: an algorithm
that generates all possible dendritic trees with 22 terminal
points, and one that creates representative samples of trees
with 128 terminal points. Based on these trees, we construct
multi-compartmental models. To assess the performance of
the resulting neuronal models, we quantify their ability to
discriminate learnt and novel input patterns. We find that
the dendritic morphology does have a considerable effect
on pattern recognition performance and that the neuronal
performance is inversely correlated with the mean depth of
the dendritic tree. The results also reveal that the asymme-
try index of the dendritic tree does not correlate with the
performance for the full range of tree morphologies. The
performance of neurons with dendritic tapering is best pre-
dicted by the mean and variance of the electrotonic distance
of their synapses to the soma. All relationships found for
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passive neuron models also hold, even in more accentuated
form, for neurons with active membranes.
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1 Introduction

This paper studies functional aspects of dendritic morpholo-
gies. The dendritic trees that are present in the brain exhibit
a great variety of morphologies, and different types of neu-
rons (such as pyramidal cells, Purkinje cells, Golgi cells)
are characterised by their specific dendritic structures. It is
unlikely that this is accidental, and several hypotheses have
been posited to explain the existence of these variable den-
dritic dimensions and branching structures. For example, it
has been suggested that the dendritic morphology of a neu-
ron is optimised so that the cost of propagating signals from
the synapses to the soma is minimal (Cuntz et al. 2007; Wen
and Chklovskii 2008). It is also thought that the dendritic
topology, how the dendritic segments are connected, could
relate to the firing pattern of the neuron (Mainen and
Sejnowski 1996; Fohlmeister and Miller 1997; Krichmar
et al. 2002; van Ooyen et al. 2002; van Elburg and van
Ooyen 2010).

Dendrites have an important role in the information pro-
cessing that takes place in a neuron. They are involved
in the generation, propagation and integration of synaptic
potentials, the back propagation of action potentials and
the induction of synaptic plasticity (Gulledge et al. 2005;
London and Häusser 2005; Cuntz et al. 2007; Wen and
Chklovskii 2008). The latter has been implicated in learning
and therefore in the functioning of associative memory [for
example Chen et al. (2011) and Steuber et al. (2007)].

mailto:giseli@inf.ufsc.br
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In the present study we take a model neuron, which may
either be passive or contain active ion channels, and train it
to perform a pattern recognition task. The synaptic strengths
are set so that the neuron responds differently to patterns
it has learnt, from purely random, novel patterns. Both the
learnt and novel patterns are sparse, binary patterns that do
not change over time. In order to see the effect of morpho-
logical variation in the dendrites we generated a variety of
dendritic trees. In our first experiment, using a small neuron
with only 22 terminal points and 43 synapses, we were able
to generate every possible dendritic structure with binary
bifurcations, and measure the performance of all of these
model neurons. In the remaining experiments we used a big-
ger neuron with 128 terminal points and 255 synapses, in
which the size of the morphological space entailed that we
evaluated only a sample of all the possible morphologies.
There are a variety of metrics that can be used to charac-
terise a tree structure, such as its symmetry or mean depth.
Using these measures we were able to examine how well
these metrics were able to predict the performance of a
neuron from its morphology.

2 Methods

We first present the neuron models and their biophys-
ical parameters (Section 2.1), followed by four metrics
used to quantify the morphological features of the den-
drite (Section 2.2). Next, we describe the algorithms used
for generating, in a systematic way, sample neurons that
differed only in their dendritic topology (Section 2.3).
Section 2.4 deals with the pattern recognition task (the
patterns, their presentation and the metric used to assess
neuronal performance), and the final Section 2.5 gives some
implementation details. The simulation source code and
neuronal model are freely available at https://code.google.
com/p/evol-patrec.

2.1 The neuron model

The neuronal model used in this work is based on the model
and dendritic morphologies described by van Ooyen et al.
(2002). In their work, the authors built simple dendritic
morphologies with the same electrophysiological proper-
ties but varying topological arrangements, shown to pro-
duce different firing patterns. This model was not based
on an actual neuronal morphology, but rather used to
represent members of an abstract morphology space. All
morphologies were binary trees with a simplified struc-
ture, including all dendritic segments having the same
length. Because of the simplicity of the morphologies
produced by this model, they were chosen to be the
basis of our search for optimal morphologies for pattern
recognition.

2.1.1 Passive and active membrane properties

The experiments performed in our present work used two
types of neuron models: passive models that did not con-
tain any active conductances in the soma and dendrites
and that were therefore unable to generate action poten-
tials, and active models with voltage-gated ion channels in
both soma and dendrites. Based on van Ooyen et al. (2002),
the following values were used for the passive parame-
ters membrane capacitance, membrane resistance and axial
resistivity, respectively: Cm = 0.75 μF/cm2, Rm =
30 k�cm2 and Ra = 150 �cm. For the active models,
Hodgkin-Huxley-type kinetic descriptions of ion channels
were also taken from van Ooyen et al. (2002), based
on Mainen and Sejnowski’s two-compartmental model
(Mainen and Sejnowski 1996). Their conductance densi-
ties and reversal potentials are presented in Table 1. Note
that a different Eleak value was used for the passive
model (-65 mV), in agreement with a study on pattern
recognition in a model hippocampal pyramidal cell by
Graham (2001).

Table 1 Ion channel
conductances from van
Ooyen’s model. These
conductances are expressed in
pS/μm2, reversal potentials
in mV

Conductance Symbol Soma Dendrite Reversal

potential

Fast Na+ gNa 3000 15 60

Fast non-inactivating K+ gKv 150 − −90

Slow voltage-dependent non-inactivating K+ gKm − 0.1 −90

Slow Ca2+-activated K+ gKCa − 3 −90

High voltage-activated Ca2+ gCa − 0.3 140

Leak gLeak − 0.33 −70

https://code.google.com/p/evol-patrec
https://code.google.com/p/evol-patrec
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2.1.2 Compartmentalisation and synapses

Each edge of the binary tree representing the dendritic mor-
phology was implemented as an isopotential compartment
receiving one synapse. As a result (see below), the neu-
rons simulated in the exhaustive search, having m = 22
terminal branches, counted 43 (= 2m −1) dendritic com-
partments. Those sampled from the space of trees with 128
terminal branches had 255 compartments. The lengths and
diameters of the soma and dendritic compartments were
also based on the values used in van Ooyen et al. (2002).
The soma was a cylinder of 20 μm length and diameter.
Each dendritic compartment had a diameter of 2.5 μm.
The passive models were simulated with dendritic com-
partmental lengths of either 10 μm (all simulations apart
from Fig. 8) or 5 μm (Fig. 8, which contains a direct com-
parison between active and passive models in the same
panels). Only 5 μm long compartments were used in the
active models, which required some initial tuning to make
them appropriate for the pattern recognition task (see also
Section 2.4). To analyse the effect of tapering on neu-
ronal performance, we also introduced a new parameter
called the tapering factor. The tapering factor is the ratio
between the diameter of the child branch and its parent(

tapering factor = diamchild

diamparent

)
. Hence, tapering factor = 1

means no tapering, and tapering factor = 0.8 means that the
diameter of each child branch will be 20% smaller than that
of its parent branch. To prevent the generation of unrealisti-
cally thin dendrites through tapering, a minimum dendritic
diameter of 0.1 μm was reinforced.

The models were excited through activation of synapses
of the AMPA-receptor type, one on each compartment.
These synapses were modelled as time-varying conduc-
tances with a dual-exponential time-course and imple-
mented as Exp2Syn objects in the NEURON simulator
(Carnevale and Hines 2006), with parameter values of 0.2
and 2 ms for the rise and decay time-constant, respectively,
and a reversal potential of 0 mV. The peak conductance
amplitude of a naive synapse (before learning) was set to 1
nS for passive models and 1.5 nS for active models. After
learning, these conductances were scaled by multiplying
them with the resulting synaptic weights (see Section 2.4).

2.2 Morphological tree metrics

To distinguish between different dendritic tree topologies,
we used four morphological metrics: asymmetry index,
mean depth, and mean and variance of electrotonic path
length. The asymmetry index is simply the mean of the par-
tition asymmetries of all vertices (bifurcation points) in the
tree (van Pelt et al. 1992). So, the index of asymmetry At

for a given tree αn, with n terminal segments and n − 1

bifurcation points, is defined as:

At(α
n) = 1

n − 1

n−1∑
j=1

Ap(rj , sj ) (1)

The partition asymmetry Ap at a given vertex j is defined
as :

Ap(rj , sj ) =
∣∣rj − sj

∣∣
rj + sj − 2

(2)

where rj and sj are the number of terminal segments in the
two subtrees of the vertex j and Ap(1, 1) is equal to zero.
Given this equation, we find that the asymmetry index is
zero for the most symmetric tree and close to one for the
most asymmetric one.

The second metric used, mean depth, is calculated as
the mean number of steps between the soma and the den-
dritic synapses. Thus, for a given tree αn with n terminal
segments, the mean depth Pt is defined as:

Pt(α
n) = 1

2n − 1

2n−1∑
i=1

Pi (3)

where Pi is the total number of edges on the path from
the ith segment to the soma. Notice that the mean depth is
calculated over all dendritic segments instead of just the ter-
minal ones as previously done in related work (van Ooyen
et al. 2002). This is required as we need to consider the loca-
tion of all synapses, which are uniformly distributed over all
dendritic segments.

The third metric, mean electrotonic path length, also used
by van Elburg and van Ooyen (2010), is also calculated
using the path from each dendritic segment to soma. To
calculate the electrotonic path length, each dendritic seg-
ment i has its length �i normalised by an electrotonic length
constant λi , which is defined as:

λi =
√

diRm

4Ra

(4)

where di is the diameter of the dendritic segment i. So, the
normalised electrotonic length Λi is given as:

Λi = �i

λi

(5)

To calculate the mean electrotonic path length (MEP) for
the dendritic tree with n terminal segments, the following
equation is used:

MEP(αn) = 1

2n − 1

2n−1∑
i=1

�i (6)

where �i is the sum of the electrotonic lengths �j of all the
dendritic segments on the path from dendritic segment i to
soma. It is important to notice that when all compartments
have the same length and diameter (no tapering), the mean
electrotonic path length is proportional to the mean depth
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metric. For this reason, mean electrotonic path length is only
reported in the final section where tapering is examined.

The last metric, variance of electrotonic path length, cal-
culates the variance of �i across all synapses. This metric
was introduced as it may better correlate with the signal-to-
noise metric used to quantify neuronal performance, which
also involves the calculation of variances (as later explained
in Section 2.4).

2.3 Systematic tree generation

2.3.1 Representation of dendritic trees

To represent and generate dendritic trees, the partition nota-
tion from van Pelt and Verwer (1985 ) was used. A partition
at a bifurcation point in a binary tree is defined by a pair
of numbers which denote the degree of each subtree. Each
partition represents a bifurcation point, where the nodes of
its subtree are split into those on its left and those on its
right branch. The topology of the whole tree can therefore
be characterised by the set of partitions at its bifurcation
points. So, for example, the most asymmetric tree with 5 ter-
minal points can be described by the partitions 5(1 4(1 3(1
2(1 1)))) .

In general, a binary tree Tn with n terminal points can be
described using the following rule:

Tn = n(Ta Tb) (7)

where a + b = n; a, b > 0 and T1 = 1.

2.3.2 Trees exhaustively generated

To compare a large set of neuronal morphologies, the initial
idea was to cover the whole search space by generating all
possible binary trees for a given number of terminal points.
To do this, we implemented an algorithm of which the pseu-
docode is presented in Algorithm 1 in the Appendix. Note
that the tree-space scales exponentially with the number of
terminal branches (Harding 1971). For practical reasons, we
chose a tree order of 22 terminal points, which, using the
code above, generated a total number of 1,514,661 trees

(a tree of 24 terminal branches would have 8,197,377 dif-
ferent morphologies!). Samples of the trees generated are
presented in Fig. 1.

2.3.3 Trees selectively generated

As it was not possible to simulate the whole range of
neuronal morphologies for the desired dendritic tree order
(128 terminal points), a second method was used, com-
paring randomly generated morphologies. To achieve this,
we implemented an algorithm to produce samples of den-
dritic trees with a given number of terminal points (see
pseudocode given in Algorithm 2 in the Appendix). This
algorithm differs from the one to generate trees exhaustively
mainly at the splitting function. Instead of generating the
whole possible range of partitions for each pair of branches
a and b, the algorithm depends on a bias value, which con-
trols the partition. In summary, low bias is more likely to
generate trees with extreme values, which means more sym-
metric or asymmetric trees. On the other hand, if the bias
is equal to 0.5 the algorithm generates completely random
trees.

A sample of trees generated with 128 terminal points
using this algorithm is presented in Fig. 2, where the trees
are ordered by their degree of symmetry.

2.4 The pattern recognition task

The neuronal model was trained to discriminate between
stored and novel spatial input patterns. A pattern was a ran-
dom vector of binary numbers with one number for each
compartment, a positive bit meaning that the associated
synapse was to be activated. The patterns were sparse (only
about 10% of the synapses were activated per pattern). The
selectively generated neurons with 128 terminal branches
(255 dendritic compartments) had 255-bit input patterns,
with 25 positive bits. In the exhaustive search of neurons
with 22 terminal branches, 43-bit patterns were used with
4 positive bits. Throughout all neurons and trials, each pre-
sented pattern was newly generated. Potential effects of
randomness were avoided by averaging, for selected neuron
samples, over 100 trials (Figs. 7a, 8, 10 and 11).

Fig. 1 Samples of tree morphologies with 22 terminal points generated by an exhaustive tree-generation algorithm. The values shown indicate
asymmetry index (top) and mean depth (bottom). For these neurons, all compartments were 10 μm long
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Fig. 2 Six sample trees with 128 terminal points generated by the
selective tree-generation algorithm. The values indicate the tree asym-
metry index (top) and the mean depth (bottom). The trees are visualised
using the NEURON simulator tool (Hines and Carnevale 1997),
which displays the long dendritic shafts of the most asymmetric trees

as a circle. Note that the angles between branches are used only
for visualisation and do not affect the neuron’s electrotonic proper-
ties. Depending on the simulation (as explained in the Methods), all
compartments are either 5 μm or 10 μm long

To present the patterns to the neuronal model, each bit
of the input pattern was mapped to a specific synapse.
To do this, each synapse was numbered by the loca-
tion of its dendritic compartment in the tree. The com-
partments were indexed from the left side of the tree
to the right. An example is given in Fig. 3 where
the same pattern was mapped to the dendritic trees
from both the most symmetric and the most asymmetric
morphologies.

The learning rule was simple one-shot Hebbian learn-
ing: when the N patterns to be learnt were xμ (μ is
1..N), the (dimensionless) weight at synapse i was given by
wi =

∑
μ

x
μ
i . In the recall phase, the performance was

measured by comparing the neuronal responses after the
presentation of learnt and novel input patterns. In the pas-
sive models, the comparison was done by using the somatic
EPSP amplitudes as shown in Fig. 4; in the active mod-
els, the number of evoked action potentials in a 100 ms
time window was used as shown in Fig. 5. It should

be noted that the accuracy of this performance evalua-
tion is determined by the number of trials, the greater
the number of trials the more accurate is the performance
measurement.

The discrimination between stored and novel patterns
was evaluated by calculating a signal-to-noise ratio (s/n),
which is given as (Dayan and Willshaw 1991):

s/n = (μs − μn)
2

0.5
(
σ 2

s + σ 2
n

) (8)

where μs and μn represent the mean values and σ 2
s and

σ 2
n the variances of the responses to stored and novel pat-

terns, respectively. From the histograms presented in Figs.
4 and 5, it is possible to find a clear discrimination between
stored (blue bars) and novel patterns (red bars), which result
in high s/n ratios in both figures (23.76 and 16.20 respec-
tively). Note that all signal-to-noise ratios mentioned in
Section 3 are the averages of at least five complete trials of
this learning and testing procedure.

Fig. 3 Mapping input pattern to
trees. The diagram shows how
the same input pattern is
mapped to each synapse in the
most symmetric and the most
asymmetric morphologies
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Fig. 4 Pattern recognition in
the passive neuron model. The
voltage traces (left) show the
EPSP responses at the soma to
10 stored patterns (blue traces)
and 10 novel patterns (red
traces). The histogram shows
the frequency of the EPSP peak
responses for both stored and
novel patterns (bin-width 1
mV). The resulting
signal-to-noise ratio is 23.76

Given that the measured responses were different in pas-
sive and active neurons (EPSP amplitude versus number
of spikes), a slightly different strategy of pattern presen-
tation was used in the active models in order to obtain
signal-to-noise ratios of similar magnitude. More particu-
larly, whereas in passive neurons all positive pattern bits
activated their associated synapses simultaneously and only
once, in active neurons these synapses were each activated
by a train of 5 spikes with 3 ms interspike intervals. More-
over, as the outcome of the active neurons was discrete (their
number of spikes), their range of responses was limited and
it was not uncommon for some neuronal topologies to gen-
erate identical spike numbers to all patterns, rendering the
variances zero and hence the s/n ratio non-existent. To avoid
this problem noise was added to the synapses of the active
models. This noise comprised both a jitter on the timing of

the spikes in the afferent train, and a random background 1
Hz activation of each synapse in the tree with a strength of
0.5 nS. As a control, we applied in Fig. 8 the same affer-
ent trains and background noise to both active and passive
models.

2.5 Implementation details

All trees were generated by LISP programs, stored using
their partition representation, and read into the NEURON
simulator (Hines and Carnevale 1997) by custom-made rou-
tines implemented in C++. Simulating a neuronal morphol-
ogy with 128 terminal points took approximately 7 seconds
for passive models and 24 seconds for active models, on
an 2 Quad-Core Intel Xeon 2.8-GHz processor with 8Gb
physical memory under MacOS X 10.6. The most intense

Fig. 5 Pattern recognition in the active model. The neuronal response
in active neuronal models was determined by counting the number of
spikes after pattern presentation. Two examples of neuronal response
are shown in (a), for novel and stored patterns. The raster plot in (b)

represents the responses to 10 stored patterns (blue dots) and 10 novel
patterns (red dots). The histogram in (c) shows the frequency of the
number of spikes produced for stored and novel patterns. The resulting
signal-to-noise ratio is 16.20. Scale bars: 5 ms, 20 mV
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Fig. 6 The performance of every binary tree with 22 terminal points
is plotted against asymmetry index (a) and mean depth (b). For each
metric, a different bin width is used to result in a similar resolution of
data (0.01 for asymmetry index and 0.1 for mean depth respectively).

The pattern recognition performance was calculated by averaging over
the s/n ratio in response to five different sets of patterns presented to
each neuronal morphology. Error bars represent the standard deviation
calculated across all trees within the bin

simulations ran 155,000 passive morphologies for about 10
days distributed over five dual Quad-core computers. The
data were analysed using MATLAB (MathWorks).

3 Results

In our exploration of the relationship between pattern
recognition performance and dendritic morphology, and
our search for the best metric to describe this relation-
ship, we first compared all possible trees with 22 ter-
minal points using a passive model neuron. Next we
compared, using both passive and active neuronal mod-
els, an extensive sample of trees with 128 terminal
points, for which the space of all morphologies is too
large to be explored exhaustively. Finally, we studied
the effects of tapering of the diameter of the dendritic
compartments.

3.1 Comparing exhaustively generated trees

Each of all 1,514,661 possible trees with 22 terminal points
was implemented as a passive model neuron, and its per-
formance assessed as the mean signal-to-noise ratio of five
trials of a 20-pattern recognition task (10 stored versus 10
novel patterns). To present this large amount of data, we par-
titioned the tree space according to the two morphometrics
studied here, asymmetry index and mean depth. Figure 6
shows the mean and standard deviation of the signal-to-
noise ratio for these partitioned data sets, using bin-widths
of 0.01 for the asymmetry index in (a), and 0.1 for the mean
depth in (b).

These results demonstrate that for trees with 22 terminal
points, the trees with lower values of the two metrics, which
represent the more symmetric morphologies, are the ones

with better pattern recognition performance. The trends pre-
sented in Fig. 6 show a decrease of performance when the
morphologies become more asymmetric. The fluctuations
found in the last bins of each metric as well as the initial bins
for the asymmetry index metric result from the low number
of trees that are contained in these bins.

3.2 Comparing selectively generated trees

Exhaustively generating a complete set of neurons with
larger dendritic trees is not feasible. We therefore wrote
a LISP program that drew 155,000 sample trees from the
space of trees with 128 terminal branches. This program had
a parameter (the bias) that could be set to ensure that trees
with extreme morphologies (very symmetric and asymmet-
ric trees) were sampled as well. The scatter plot of Fig. 7a
shows, for each sampled tree implemented as a passive neu-
ron, the signal-to-noise ratio averaged over 5 trials of 20
patterns. Notice that the LISP program sampled the entire
range of asymmetry indices, though not uniformly, which
generated the set of data found in the blue scatter plot of
Fig. 7a. Initially, the result seemed unpromising. However,
when a more detailed examination was undertaken a clearer
pattern emerged. As for each neuron 20 new patterns (10
acting as stored patterns and 10 acting as novel patterns)
were randomly generated at each trial, and as each tree
was assessed over only 5 trials, the difficulty of the pattern
recognition task was expected to depend on the particular
set of 5 times 20 patterns that was used for each neuron
(for example, it should be easier for neurons to distinguish
orthogonal or non-overlapping patterns). Thus, as the accu-
racy of the performance measure increased with the number
of trials, we randomly selected one neuron from each bin
and averaged its performance over 100 trials of the same
pattern recognition task. The results are shown as red data
points in Fig. 7a, which allowed to verify the overall trend
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Fig. 7 Pattern recognition performance of passive neurons having
dendrites selectively generated from the space of trees with 128 termi-
nal points. The scatter plot in (a) shows, for each of 155,000 trees, the
signal-to-noise ratios assessed over five trials of a 20-pattern recog-
nition task (blue data points). For the construction of the red curve,
one tree was randomly selected from each bin, and its performance re-
calculated over 100 trials of the pattern recognition task. (b) plots the
mean (calculated from data points in (a)) and standard deviation of the
signal-to-noise ratio over all trees within the same bin (bin-width 0.01)
against the asymmetry index. (c) shows the signal-to-noise ratio of all
trees within the same bin (bin-width 1) against the mean depth of these
trees

visible in the data. In the next step, we partitioned the tree
space into bins of 0.01 width along the asymmetry index
axis as above. The blue error bars in (b) plot the mean and
standard deviation in each bin, and the smooth character of
the curve arises from the large number of samples averaged
for each bin. For (c) a similar plot was produced where the
mean and standard deviation of the signal-to-noise ratio for
each bin is plotted against the mean depth of each tree. This
metric shows a better correlation with the pattern recogni-
tion performance, which can be explained by the way this
metric is calculated based on the distance of each synapse
from the soma.

To study the effect of active conductances on the relation-
ship between dendritic morphology and pattern recognition
performance, and to compare this relationship for active
and passive model neurons with selectively generated trees,
a new experiment was designed where both models used
the same set of trees, as given in the previous experiment,
and the same set of parameters as originally determined for
active models (compartments of 5μm length with synapses
of 1.5 nS peak conductance, 5-spike input trains and back-
ground synaptic noise). The results are plotted in Fig. 8
against two metrics, asymmetry index (a) and mean depth
(b). Each data point and error bar indicate the average and
standard deviation over five randomly selected neurons in
each bin. The results show that the negative correlation
between pattern recognition performance and mean depth
persists across the whole depth range for both active and
passive models (b). In contrast, as shown in (a), the asym-
metry index does not correlate with performance over its
entire range for either the active or the passive models. This
results from the fact that all of the trees with asymmetry
indices between 0 and 0.4 correspond to a range of trees
with very similar low mean depth (close to 7), as shown in
Fig. 9. Interestingly, all of these trees with varying asym-
metry index and therefore varying morphology but similar
mean depth show an almost identical pattern recognition
performance. This lack of effect of dendritic morphology
on pattern recognition performance for very symmetric trees
explains why mean depth but not asymmetry index corre-
lates well with pattern recognition performance as shown
in Fig. 8. Thus, the presence of active conductances does
not affect the shape of the relationships between the two
measures of tree morphology and the pattern recognition
performance.

3.3 Robustness of the results

In order to investigate the robustness of our results, we var-
ied the different parameters of our experiment described in
Section 3.2. In particular we varied the amount of back-
ground noise, the loading (the number of stored patterns)
and the sparsity (the number of active synapses) of the
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Fig. 8 Pattern recognition performance of active (red) and passive
(blue) neuronal models with selectively generated dendritic morpholo-
gies drawn from the space of trees with 128 terminal points. Results
were obtained by generating a population of 155,000 trees spanning
the full range of each metric, from which five trees were randomly
selected in each bin, using bin-widths of 0.05 for the asymmetry index

(a) and 2.5 for the mean depth (b). Each data point and error bar plots
the average and standard deviation over the five selected neurons, each
tested over 100 trials in a 20-pattern recognition task. Note that in these
simulations, as explained in Section 2.4, the passive neurons received
the same afferent spike trains and background noise as used for the
active neurons

patterns. We also checked the effect of adding NMDA
receptors. These results are shown in Fig. 10. Panel (a)
shows that the addition of background noise led to a small
decrease in pattern recognition performance, without affect-
ing the shape of the relationship between the mean depth of
the dendritic trees and the signal-to-noise ratio. As expected,
similar results were obtained when the loading and the spar-
sity were varied. Panel (b) shows that the signal-to-noise
ratio decreased as the loading increased, but performance

Fig. 9 Asymmetry index against mean depth for selectively generated
trees with 128 terminal points. The plot shows that all trees with asym-
metry index up to 0.4 have a similar low mean depth. The inset in the
top left corner shows example trees with the same mean depth (8.15)
but different asymmetry indices (presented below each tree). The bot-
tom left inset highlights the trees with asymmetry index between 0 and
0.3, which all have a mean depth around 7.2. The bin width used for
the asymmetry index is 0.02

was still inversely correlated with mean depth. Panel (c)
shows that as anticipated performance decreased as spar-
sity increased, but the anti-correlation between mean depth
and performance was maintained at all three sparsities
tested. Finally panel (d) shows that changing the ratio of
NMDA and AMPA receptors affected the performance of
the model and interestingly, when the conductance ratio
was 0.5 the neuron became less sensitive to variations of
its morphology. The slow time-course of the NMDA recep-
tor conductances made the responses to the input patterns
less sensitive to low-pass filtering by the dendrite, and
hence pattern recognition less sensitive to the precise loca-
tion of the synapses and the morphology of the tree. For
NMDA/AMPA receptor conductance ratios of 0.5 or more,
this improved the pattern recognition performance of neu-
rons with asymmetric dendritic trees (in mean ± standard
deviation, NMDA/AMPA ratio 0.5: s/n = 32.59 ± 11.27 for
fully symmetric trees, s/n = 24.59 ± 9.01 for fully asym-
metric trees; NMDA/AMPA ratio 1: s/n = 29.31 ± 12.62
for fully symmetric trees, s/n = 23.18 ± 10.52 for fully
asymmetric trees; compare Fig. 10d).

3.4 The effect of dendritic tapering

The results presented so far concerned trees with branches
of uniform thickness; all compartments had the same diam-
eter. In the remaining set of simulations, we investigated
the effect of dendritic tapering on neuronal performance.
In these experiments, the tapering factor (explained in
Section 2.1.2) was varied from 1 down to 0.7 and applied
to all dendritic branches, from the soma to the terminal
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Fig. 10 Robustness of the pattern recognition performance in passive
neurons with 128 terminal points. Results were obtained by averaging
the pattern recognition task over 100 trials for each of the 100 samples
of morphologies used in Figure 7a. The green data points in each panel
represent the control simulation, where the parameters used were the
same as in Figure 7. Panel (a) shows that the pattern recognition task is
robust to varying amounts of background noise. In (b), we demonstrate
that the pattern recognition performance was affected by increasing

the number of stored patterns presented to the model, but the overall
pattern of performance against mean depth persists. Panel (c) shows
that the results are robust when the sparsity varied. Panel (d) shows
that the ratio of NMDA and AMPA receptors affects pattern recog-
nition performance, whilst preserving the inverse correlation between
performance and mean depth. The NMDA receptors were modelled as
described in Graham (2001)

points, until a minimum allowed diameter of 0.1 μm was
reached. To analyse the results for dendritic trees in the
presence of tapering, we calculated two new metrics, the
mean and variance of the electrotonic path length, which
take into account the dendritic compartmental diameter (see
Eqs. (4) to (6)). Comparing the results for these metrics
with both metrics used in the previous experiments, asym-
metry index and mean depth, we found that the mean
and variance of the electrotonic path length correlated bet-
ter with neuronal performance in both passive and active
models (see Fig. 11). From this figure, we can see that
the mean and variance of the electrotonic path length are
robust predictors of the pattern recognition performance
of passive neuronal models even when trees with differ-
ent degrees of tapering are compared (Fig. 11c and d).
In neuronal models with active conductances, the mean
and variance of the electrotonic path length correlate well

with performance for tapering factors between 0.7 and 0.9
(Fig. 11c and d). The other two metrics, in contrast, show a
much poorer relationship, which moreover strongly depends
on the tapering factor used (Fig. 11a and b).

4 Discussion

The main result of this paper is that the dendritic morphol-
ogy of a neuron has a major effect on its pattern recognition
performance. To study how dendritic morphology affects
pattern recognition performance, we generated all possible
dendritic trees with 22 terminal points, and compared sim-
ulations of these smaller trees to a representative selection
of larger trees with 128 terminal points. In both cases, the
fully symmetric morphologies showed a better performance
when compared to the fully asymmetric ones. However, the
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Fig. 11 Pattern recognition
performance of model neurons
in the presence of dendritic
tapering. The tapering factor
was varied from 0.7 to 1. The
morphological metrics used,
asymmetry index (a), mean
depth (b), and mean and
variance of electrotonic path
length (c, d) are plotted on a
logarithmic scale for
visualisation purposes. The
signal-to-noise ratio was
calculated by averaging over
100 trials of 20 patterns

results for the selectively generated trees with 128 termi-
nal points showed that the dendritic morphologies with an
asymmetry index up to 0.4 performed as well as the most
symmetric ones. The inability of morphology to affect per-
formance for very symmetric trees can be explained by
the fact that all trees with an asymmetry index up to 0.4
correspond to the same set of trees with the lowest mean
depth, which results in a poor overall correlation between
asymmetry index and neuronal performance.

We also found that the mean depth of the dendritic tree
correlates with neuronal performance, when tapering is not
present, for both active and passive models (Fig. 8b). How-
ever, when dendritic tapering was introduced, the mean
depth correlated less well with performance (Fig. 11b).
The same experiment showed that the mean and variance
of the electrotonic path length were the best predictors of
pattern recognition performance in both active and passive

models (Figs. 11c and d). The reason for the better pat-
tern recognition performance of the neurons with dendritic
trees with smaller mean electrotonic path lengths (or, in the
absence of tapering and for constant compartment lengths,
equivalently, smaller mean depths or mean path lengths) is
illustrated in Fig. 12. The dendritic trees with the smallest
possible mean electrotonic path length are the most sym-
metric ones (shown on the right in Fig. 12). In these fully
symmetric dendritic trees, the variance of somatic responses
to dendritic synaptic input is minimised, maximising the
signal-to-noise ratio Eq. (8) and pattern recognition perfor-
mance. In contrast, asymmetric neurons with large mean
electrotonic path lengths (illustrated on the left of Fig. 12)
are more likely to receive input patterns with active synapses
located predominantly near the distal or proximal end of the
dendrite (highlighted by the yellow circles in Fig. 12). These
input patterns with distal or proximal activation biases
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Fig. 12 Comparison of pattern
recognition in neurons with the
most symmetric and the most
asymmetric dendritic
morphologies. The s/n ratios,
shown on the top of each
histogram, are calculated using
the EPSP peaks resulting from
the presentation of sets of stored
(blue) and novel (red) patterns.
On top of each of the EPSP
traces the neuronal
morphologies used in this
experiment are shown, with blue
dots that represent the location
of each active synapse for the
lowest and highest response
obtained for stored patterns. The
yellow circles shown for the
asymmetric morphology
indicate the location of clusters
of active synapses that are
located predominantly at the
distal or proximal end of the
dendrite, leading to the lowest or
highest response, respectively.
The spatial distributions of
active synapses for the stored
patterns (bottom graphs, x-axis
in μm) also explain why the
performance is better for the
most symmetric morphology
(right), as this morphology has a
larger number of active synapses
closer to the soma and
consequently, a smaller variance
of synaptic distances and
somatic voltage responses when
compared to the most
asymmetric morphology (left)

will result in particularly small or large somatic potentials,
respectively (or, in the active model, small or large numbers
of spikes), which increases the range of responses to input
patterns, leads to a larger response variance and a smaller
signal-to-noise ratio.

The present study is an extension of previous work by
us (Steuber et al. 2007) and others (Graham 2001) that has
used input patterns with synapses that are activated syn-
chronously by single pulses. The nature of the patterns of
neuronal activity that are stored and recalled in real neuronal
systems is not known, although the sparse activity that has
been recorded in many neuronal systems suggests that some
neurons have to decode patterns of single spikes or bursts
of spikes (Chadderton et al. 2004). Other studies (Poirazi

et al. 2003b) have used input patterns where synapses were
activated by high-frequency spike trains. However, a com-
panion paper by the same authors (Poirazi et al. 2003a)
has shown that although the type of input pattern (single
pulses vs spike train) affects the exact shape of the neu-
ronal input-output relation, the type of arithmetic operations
performed by the neurons is the same for both types of
input patterns. Whilst we have used an evolutionary algo-
rithm to optimise the number of spikes that each active
synapse receives in another study (de Sousa et al. 2012),
in the current study we have therefore used simple types
of input patterns with one spike or a short burst of spikes
for each synapse. Although the type of input pattern may
affect the value of the signal-to-noise ratio and hence the
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pattern recognition performance, we never found it to affect
the shape of the relationships between dendritic morphology
and pattern recognition described in the present paper.

Although our conclusions are based on simulations of
binary trees trained to recognise random (and hence uncor-
related) input patterns, we think they can be generalised
to more anatomically constrained input configurations, like
those which neurons receive for instance in layered struc-
tures such as neocortex. Indeed, in the present pattern
recognition task, the neurons had to summate the weights
of the synapses that were activated by the pattern, and at
least in the active models, compare this sum to a refer-
ence, their spike threshold (Willshaw et al. 1969). As the
input patterns caused transient responses, the neurons also
had to act as coincidence detectors, to which symmetric
neurons arguably are better suited. In a study of model
neurons for interaural coincidence detection, Agmon-Snir
et al. (1998) reported another advantage of neurons with
symmetric trees, which holds even in the absence of learn-
ing: the threshold intensity needed to fire them is lower
for spatially balanced than for unbalanced stimuli. How-
ever, this is not to say that asymmetric trees would always
have a negative effect on pattern recognition. If neurons
were to recognise asynchronous input patterns, asymmet-
ric trees would offer an advantage by slowing down the
propagation of the earliest EPSPs so as to synchronise
their arrival at the soma with the EPSPs of later acti-
vated synapses (Rall 1964). Moreover, the optimal shape
of a dendritic tree will be affected by other factors, such
as the desire to maximise the number of possible connec-
tivity patterns between dendrites and neighbouring axons
(Wen et al. 2009).

From the present results, and more particularly from
the inverse relationship between electrotonic distance and
pattern recognition performance (Fig. 11), one might be
inclined to conclude that smaller neurons would always
be better pattern recognisers than big neurons. In the
limit, even a single-compartment neuron, though physically
implausible, would be most cost beneficial. However, this
conclusion is mistaken, as it is based on the compar-
ison of trees built of compartments of a given fixed
length. Indeed, when in another study we used genetic
algorithms to optimise dendritic shape (de Sousa et al.
2012), treating compartmental length as a free param-
eter, we found no clear indication that neurons would
minimise the length of their compartments, which obvi-
ously would further minimise both electrotonic distance
and its variance. The reason is that individual synapses
must be sufficiently isolated, or compartmentalised, to pre-
vent sublinearities in the generation and summation of their
EPSPs, which inevitably arise due to shunting of the cur-
rent at the synapse’s reversal potential (Rall 1964). One
could of course linearise the interaction between synapses

by reducing their weights, but in actual neurons mem-
brane noise may put a limit on this miniaturisation,
as it does for axons (Faisal et al. 2005). Hence the
trade-off between minimising the synapses’ distance from
the soma, and preventing sublinear interference by max-
imising the distance between them may be best satis-
fied by symmetric multi-compartmental trees. Another
strategy for neurons, not covered by the present study,
may be to enhance their computational capacity by tak-
ing advantage of dendritic nonlinearities and expand-
ing them through localised, branch-specific interactions
(Legenstein and Maass 2011; Poirazi and Mel 2001; Poirazi
et al. 2003a, b; Cazé et al. 2013).
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