8,922 research outputs found

    About the screening of the charge of a proton migrating in a metal

    Full text link
    The amount of screening of a proton in a metal, migrating under the influence of an applied electric field, is calculated using different theoretical formulations. First the lowest order screening expression derived by Sham (1975) is evaluated. In addition 'exact' expressions are evaluated which were derived according to different approaches. For a proton in a metal modeled as a jellium the screening appears to be 15 +/- 10 %, which is neither negligible not reconcilable with the controversial full-screening point of view of Bosvieux and Friedel (1962). In reconsidering the theory of electromigration, a new simplified linear-response expression for the driving force is shown to lead to essentially the same result as found by Sorbello (1985), who has used a rather complicated technique. The expressions allow for a reduction such that only the scattering phase shifts of the migrating impurity are required. Finally it is shown that the starting formula for the driving force of Bosvieux and Friedel leads exactly to the zero-temperature limit of well-established linear response descriptions, by which the sting of the controversy has been removed.Comment: 14 pages, 5 figure

    Atomic level micromagnetic model of recording media switching at elevated temperatures

    Full text link
    An atomic level micromagnetic model of granular recording media is developed and applied to examine external field-induced grain switching at elevated temperatures which captures non-uniform reversal modes. The results are compared with traditional methods which employ the Landau-Lifshitz-Gilbert equations based on uniformly magnetized grains with assigned intrinsic temperature profiles for M(T)M(T) and K(T)K(T). Using nominal parameters corresponding to high-anisotropy FePt-type media envisioned for Energy Assisted Magnetic Recording, our results demonstrate that atomic-level reversal slightly reduces the field required to switch grains at elevated temperatures, but results in larger fluctuations, when compared to a uniformly magnetized grain model.Comment: 4 pages, 5 figure

    Resistivity due to low-symmetrical defects in metals

    Full text link
    The impurity resistivity, also known as the residual resistivity, is calculated ab initio using multiple-scattering theory. The mean-free path is calculated by solving the Boltzmann equation iteratively. The resistivity due to low-symmetrical defects, such as an impurity-vacancy pair, is calculated for the FCC host metals Al and Ag and the BCC transition metal V. Commonly, 1/f noise is attributed to the motion of such defects in a diffusion process.Comment: 24 pages in REVTEX-preprint format, 10 Postscript figures. Phys. Rev. B, vol. 57 (1998), accepted for publicatio

    Micromagnetic simulations of sweep-rate dependent coercivity in perpendicular recording media

    Full text link
    The results of micromagnetic simulations are presented which examine the impact of thermal fluctuations on sweep rate dependent coercivities of both single-layer and exchange-coupled-composite (ECC) perpendicular magnetic recording media. M-H loops are calculated at four temperatures and sweep rates spanning five decades with fields applied normal to the plane and at 45 degrees. The impact of interactions between grains is evaluated. The results indicate a significantly weaker sweep-rate dependence for ECC media suggesting more robustness to long-term thermal effects. Fitting the modeled results to Sharrock-like scaling proposed by Feng and Visscher [J. Appl. Phys. 95, 7043 (2004)] is successful only in the case of single-layer media with the field normal to the plane.Comment: 7 pages, 14 figure

    Theory for the electromigration wind force in dilute alloys

    Get PDF

    Resistivity due to low-symmetrical defects in metals

    Get PDF
    • …
    corecore