12 research outputs found

    Complete sequence of the 22q11.2 allele in 1,053 subjects with 22q11.2 deletion syndrome reveals modifiers of conotruncal heart defects

    Get PDF
    The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 Ã— 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight

    Affective and psychotic reactivity to daily-life stress in adults with 22q11DS: a study using the experience sampling method

    No full text
    BACKGROUND: 22q11.2 deletion syndrome (22q11DS) is a genetic disorder associated with an increased risk of psychiatric disorders. Vulnerability for psychopathology has been related to an increased reactivity to stress. Here, we examined affective states, perceived stress, affective and psychotic reactivity to various sources of environmental stress using the experience sampling method (ESM), a structured diary technique allowing repeated assessments in the context of daily life. METHODS: Adults with 22q11DS (n = 31; age, 34.1 years) and matched healthy controls (HCs; n = 24; age, 39.9 years) were included. ESM was used to assess affective states, perceived stress, and stress reactivity. Data were analyzed using multilevel regression models. RESULTS: Adults with 22q11DS displayed overall higher levels of negative affect but comparable levels of positive affect compared to HCs. Higher levels of perceived stress were reported by individuals with 22q11DS. Comparable affective and psychotic reactivity in relation to all types of environmental stress was observed between the two groups. CONCLUSION: The results point toward higher levels of negative affect and differences in the perception of daily hassles in 22q11DS but no difference in affective or psychotic reactivity to stress. This study contributes to the growing literature regarding the impact of stress on the development of psychopathology in the 22q11DS population.status: publishe

    Lower cortisol levels and attenuated cortisol reactivity to daily-life stressors in adults with 22q11.2 deletion syndrome

    No full text
    BACKGROUND: 22q11.2 deletion syndrome (22q11DS) is a genetic disorder associated with neurodevelopmental, anxiety and mood disorders, as well as an increased risk for developing psychosis. Cortisol levels and stress reactivity reflect hypothalamic-pituitary-adrenal (HPA)-axis activity, and are believed to be altered in individuals that often experience daily-life stress, depression, and psychotic symptoms. However, it is unknown whether individuals with 22q11DS display an altered stress reactivity. METHODS: We included 27 adults with 22q11DS (mean age: 34.1 years, 67% female) and 24 age and sex-matched healthy controls (HC; mean age: 39.9 years, 71% female) into an experience sampling study. Throughout 6 consecutive days, we measured participants' subjective stress related to current activity and at the same time collected salivary cortisol samples. Multilevel regression models were used to analyze cortisol reactivity to activity-related stress. RESULTS: Diurnal cortisol levels were significantly lower in the 22q11DS group compared to HCs (B=-1.03, p < 0.001). 22q11DS adults displayed significantly attenuated cortisol reactivity to activity-related stress compared to HCs (B = -0.04, p = 0.026). Post-hoc exploratory analysis revealed that these results were independent from 22q11DS psychiatric diagnosis or medication use. CONCLUSION: These results indicate that adults with 22q11DS have lower cortisol levels and attenuated cortisol response to daily stress, possibly resulting from an increased sensitization of the HPA-axis. This suggests that alterations in HPA-axis functioning, previously reported in several psychiatric disorders including post-traumatic stress disorder (PTSD), psychotic disorder, and mood disorder, also appear to be present in adults with 22q11DS.status: publishe

    Striatal dopamine release and impaired reinforcement learning in adults with 22q11.2 deletion syndrome

    No full text
    22q11.2 deletion syndrome (22q11DS) is a genetic disorder caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk for developing psychosis. The catechol-O-methyltransferase (COMT) gene is located in the deleted region and involved in dopamine (DA) breakdown. Impaired reinforcement learning (RL) is a recurrent feature in psychosis and thought to be related to abnormal striatal DA function. This study aims to examine RL and the potential association with striatal DA-ergic neuromodulation in 22q11DS. Twelve non-psychotic adults with 22q11DS and 16 healthy controls (HC) were included. A dopamine D2/3 receptor [18F]fallypride positron emission tomography (PET) scan was acquired while participants performed a modified version of the probabilistic stimulus selection task. RL-task performance was significantly worse in 22q11DS compared to HC. There were no group difference in striatal nondisplaceable binding potential (BPND) and task-induced DA release. In HC, striatal task-induced DA release was positively associated with task performance, but no such relation was found in 22q11DS subjects. Moreover, higher caudate nucleus task-induced DA release was found in COMT Met hemizygotes relative to Val hemizygotes. This study is the first to show impairments in RL in 22q11DS. It suggests that potentially motivational impairments are not only present in psychosis, but also in this genetic high risk group. These deficits may be underlain by abnormal striatal task-induced DA release, perhaps as a consequence of COMT haplo-insufficiency.status: publishe

    Neural correlates of reward processing in adults with 22q11 deletion syndrome

    Get PDF
    BACKGROUND: 22q11.2 deletion syndrome (22q11DS) is caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk to develop psychosis. The gene coding for catechol-O-methyl-transferase (COMT) is located at the deleted region, resulting in disrupted dopaminergic neurotransmission in 22q11DS, which may contribute to the increased vulnerability for psychosis. A dysfunctional motivational reward system is considered one of the salient features in psychosis and thought to be related to abnormal dopaminergic neurotransmission. The functional anatomy of the brain reward circuitry has not yet been investigated in 22q11DS. METHODS: This study aims to investigate neural activity during anticipation of reward and loss in adult patients with 22q11DS. We measured blood-oxygen-level dependent (BOLD) activity in 16 patients with 22q11DS and 12 healthy controls during a monetary incentive delay task using a 3T Philips Intera MRI system. Data were analysed using SPM8. RESULTS: During anticipation of reward, the 22q11DS group alone displayed significant activation in bilateral middle frontal and temporal brain regions. Compared to healthy controls, significantly less activation in bilateral cingulate gyrus extending to premotor, primary motor and somatosensory areas was found. During anticipation of loss, the 22q11DS group displayed activity in the left middle frontal gyrus and anterior cingulate cortex, and relative to controls, they showed reduced brain activation in bilateral (pre)cuneus and left posterior cingulate. Within the 22q11DS group, COMT Val hemizygotes displayed more activation compared to Met hemizygotes in right posterior cingulate and bilateral parietal regions during anticipation of reward. During anticipation of loss, COMT Met hemizygotes compared to Val hemizygotes showed more activation in bilateral insula, striatum and left anterior cingulate. CONCLUSIONS: This is the first study to investigate reward processing in 22q11DS. Our preliminary results suggest that people with 22q11DS engage a fronto-temporal neural network. Compared to healthy controls, people with 22q11DS primarily displayed reduced activity in medial frontal regions during reward anticipation. COMT hemizygosity affects responsivity of the reward system in this condition. Alterations in reward processing partly underlain by the dopamine system may play a role in susceptibility for psychosis in 22q11DS
    corecore