92 research outputs found

    Bovine Herpesvirus Type 1 (BHV-1) UL49.5 Luminal Domain Residues 30 to 32 Are Critical for MHC-I Down-Regulation in Virus-Infected Cells

    Get PDF
    Bovine herpesvirus type 1 (BHV-1) UL49.5 inhibits transporter associated with antigen processing (TAP) and down-regulates cell-surface expression of major histocompatibility complex (MHC) class I molecules to promote immune evasion. We have constructed a BHV-1 UL49.5 cytoplasmic tail (CT) null and several UL49.5 luminal domain mutants in the backbone of wild-type BHV-1 or BHV-1 UL49.5 CT- null viruses and determined their relative TAP mediated peptide transport inhibition and MHC-1 down-regulation properties compared with BHV-1 wt. Based on our results, the UL49.5 luminal domain residues 30–32 and UL49.5 CT residues, together, promote efficient TAP inhibition and MHC-I down-regulation functions. In vitro, BHV-1 UL49.5 Ξ”30–32 CT-null virus growth property was similar to that of BHV-1 wt and like the wt UL49.5, the mutant UL49.5 was incorporated in the virion envelope and it formed a complex with gM in the infected cells

    Immunogenicity and Protective Capacity of a Virosomal Respiratory Syncytial Virus Vaccine Adjuvanted with Monophosphoryl Lipid A in Mice

    Get PDF
    Respiratory Syncytial Virus (RSV) is a major cause of viral brochiolitis in infants and young children and is also a significant problem in elderly and immuno-compromised adults. To date there is no efficacious and safe RSV vaccine, partially because of the outcome of a clinical trial in the 1960s with a formalin-inactivated RSV vaccine (FI-RSV). This vaccine caused enhanced respiratory disease upon exposure to the live virus, leading to increased morbidity and the death of two children. Subsequent analyses of this incident showed that FI-RSV induces a Th2-skewed immune response together with poorly neutralizing antibodies. As a new approach, we used reconstituted RSV viral envelopes, i.e. virosomes, with incorporated monophosphoryl lipid A (MPLA) adjuvant to enhance immunogenicity and to skew the immune response towards a Th1 phenotype. Incorporation of MPLA stimulated the overall immunogenicity of the virosomes compared to non-adjuvanted virosomes in mice. Intramuscular administration of the vaccine led to the induction of RSV-specific IgG2a levels similar to those induced by inoculation of the animals with live RSV. These antibodies were able to neutralize RSV in vitro. Furthermore, MPLA-adjuvanted RSV virosomes induced high amounts of IFNΞ³ and low amounts of IL5 in both spleens and lungs of immunized and subsequently challenged animals, compared to levels of these cytokines in animals vaccinated with FI-RSV, indicating a Th1-skewed response. Mice vaccinated with RSV-MPLA virosomes were protected from live RSV challenge, clearing the inoculated virus without showing signs of lung pathology. Taken together, these data demonstrate that RSV-MPLA virosomes represent a safe and efficacious vaccine candidate which warrants further evaluation

    DNA vaccination for prostate cancer: key concepts and considerations

    Get PDF
    While locally confined prostate cancer is associated with a low five year mortality rate, advanced or metastatic disease remains a major challenge for healthcare professionals to treat and is usually terminal. As such, there is a need for the development of new, efficacious therapies for prostate cancer. Immunotherapy represents a promising approach where the host’s immune system is harnessed to mount an anti-tumour effect, and the licensing of the first prostate cancer specific immunotherapy in 2010 has opened the door for other immunotherapies to gain regulatory approval. Among these strategies DNA vaccines are an attractive option in terms of their ability to elicit a highly specific, potent and wide-sweeping immune response. Several DNA vaccines have been tested for prostate cancer and while they have demonstrated a good safety profile they have faced problems with low efficacy and immunogenicity compared to other immunotherapeutic approaches. This review focuses on the positive aspects of DNA vaccines for prostate cancer that have been assessed in preclinical and clinical trials thus far and examines the key considerations that must be employed to improve the efficacy and immunogenicity of these vaccines

    Nucleoprotein Nanostructures Combined with Adjuvants Adapted to the Neonatal Immune Context: A Candidate Mucosal RSV Vaccine

    Get PDF
    BACKGROUND: The human respiratory syncytial virus (hRSV) is the leading cause of severe bronchiolitis in infants worldwide. The most severe RSV diseases occur between 2 and 6 months-of-age, so pediatric vaccination will have to be started within the first weeks after birth, when the immune system is prone to Th2 responses that may turn deleterious upon exposure to the virus. So far, the high risk to prime for immunopathological responses in infants has hampered the development of vaccine. In the present study we investigated the safety and efficacy of ring-nanostructures formed by the recombinant nucleoprotein N of hRSV (N(SRS)) as a mucosal vaccine candidate against RSV in BALB/c neonates, which are highly sensitive to immunopathological Th2 imprinting. METHODOLOGY AND PRINCIPAL FINDINGS: A single intranasal administration of N(SRS) with detoxified E. coli enterotoxin LT(R192G) to 5-7 day old neonates provided a significant reduction of the viral load after an RSV challenge at five weeks of age. However, neonatal vaccination also generated an enhanced lung infiltration by neutrophils and eosinophils following the RSV challenge. Analysis of antibody subclasses and cytokines produced after an RSV challenge or a boost administration of the vaccine suggested that neonatal vaccination induced a Th2 biased local immune memory. This Th2 bias and the eosinophilic reaction could be prevented by adding CpG to the vaccine formulation, which, however did not prevent pulmonary inflammation and neutrophil infiltration upon viral challenge. CONCLUSIONS/SIGNIFICANCE: In conclusion, protective vaccination against RSV can be achieved in neonates but requires an appropriate combination of adjuvants to prevent harmful Th2 imprinting

    Sub-Nucleocapsid Nanoparticles: A Nasal Vaccine against Respiratory Syncytial Virus

    Get PDF
    Background: Bronchiolitis caused by the respiratory syncytial virus (RSV) in infants less than two years old is a growing public health concern worldwide, and there is currently no safe and effective vaccine. A major component of RSV nucleocapsid, the nucleoprotein (N), has been so far poorly explored as a potential vaccine antigen, even though it is a target of protective anti-viral T cell responses and is remarkably conserved between human RSV A and B serotypes. We recently reported a method to produce recombinant N assembling in homogenous rings composed of 10–11 N subunits enclosing a bacterial RNA. These nanoparticles were named sub-nucleocapsid ring structure (N SRS). Methodology and Principal Findings: The vaccine potential of N SRS was evaluated in a well-characterized and widely acknowledged mouse model of RSV infection. BALB/c adult mice were immunized intranasally with N SRS adjuvanted with the detoxified E. coli enterotoxin LT(R192G). Upon RSV challenge, vaccinated mice were largely protected against virus replication in the lungs, with a mild inflammatory lymphocytic and neutrophilic reaction in their airways. Mucosal immunization with N SRS elicited strong local and systemic immunity characterized by high titers of IgG1, IgG2a and IgA anti-N antibodies, antigen-specific CD8+ T cells and IFN-c-producing CD4+ T cells. Conclusions/Significance: This is the first report of using nanoparticles formed by the recombinant nucleocapsid protein as an efficient and safe intra-nasal vaccine against RSV
    • …
    corecore