189 research outputs found

    Ten simple rules for the sharing of bacterial genotype—Phenotype data on antimicrobial resistance

    Get PDF
    The increasing availability of high-throughput sequencing (frequently termed next-generation sequencing (NGS)) data has created opportunities to gain deeper insights into the mechanisms of a number of diseases and is already impacting many areas of medicine and public health. The area of infectious diseases stands somewhat apart from other human diseases insofar as the relevant genomic data comes from the microbes rather than their human hosts. A particular concern about the threat of antimicrobial resistance (AMR) has driven the collection and reporting of large-scale datasets containing information from microbial genomes together with antimicrobial susceptibility test (AST) results. Unfortunately, the lack of clear standards or guiding principles for the reporting of such data is hampering the field's advancement. We therefore present our recommendations for the publication and sharing of genotype and phenotype data on AMR, in the form of 10 simple rules. The adoption of these recommendations will enhance AMR data interoperability and help enable its large-scale analyses using computational biology tools, including mathematical modelling and machine learning. We hope that these rules can shed light on often overlooked but nonetheless very necessary aspects of AMR data sharing and enhance the field's ability to address the problems of understanding AMR mechanisms, tracking their emergence and spread in populations, and predicting microbial susceptibility to antimicrobials for diagnostic purposes

    Autoantibody subclass predominance is not driven by aberrant class switching or impaired B cell development

    Get PDF
    A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.</p

    Autoantibody subclass predominance is not driven by aberrant class switching or impaired B cell development

    Get PDF
    A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.</p

    Complement activation during OKT3 treatment: A possible explanation for respiratory side effects

    Get PDF
    Complement activation during OKT3 treatment: A possible explanation for respiratory side effects. Respiratory side effects that sometimes occur during treatment with anti-CD3 MAb OKT3 might result from pulmonary sequestration of activated neutrophils. Therefore, we studied complement activation in relation to activation and pulmonary sequestration of neutrophils during antirejection treatment with OKT3. In each of nine patients studied, plasma C3a-desarg and C4b/c levels increased compared with pretreatment values already in the first sample taken 15 minutes after the first dose of OKT3 (P < 0.05), with peak values at 15 and 30 minutes, respectively. Levels of neutrophil degranulation product elastase (complexed to α1-antitrypsin) also increased already at 15 minutes after the first dose of OKT3 (P < 0.05), which is before elevated levels of the cytokines TNFα, IL-6 or IL-8 were detectable. In contrast, upon subsequent OKT3 administrations or in the control group treated with methylprednisolone, neither complement activation, cytokine release nor neutrophil degranulation occurred. In five studied patients treated with OKT3, pulmonary sequestration of radiolabeled granulocytes was observed from 3 until 15 minutes after the first dose of OKT3, together with peripheral blood granulocytopenia, which lasted at least 30 minutes. In conclusion, we demonstrate a simultaneous activation of complement and pulmonary sequestration of activated granulocytes immediately following the first dose of OKT3. These phenomena may be involved in the development of respiratory side effects complicating this therapy

    A characterization of cis- and trans-heritability of RNA-Seq-based gene expression

    Get PDF
    Insights into individual differences in gene expression and its heritability (h2) can help in understanding pathways from DNA to phenotype. We estimated the heritability of gene expression of 52,844 genes measured in whole blood in the largest twin RNA-Seq sample to date (1497 individuals including 459 monozygotic twin pairs and 150 dizygotic twin pairs) from classical twin modeling and identity-by-state-based approaches. We estimated for each gene h2 total, composed of cis-heritability (h2 cis, the variance explained by single nucleotide polymorphisms in the cis-window of the gene), and trans-heritability (h2 res, the residual variance explained by all other genome-wide variants). Mean h2 total was 0.26, which was significantly higher than heritability estimates earlier found in a microarray-based study using largely overlapping (>60%) RNA samples (mean h2 = 0.14, p = 6.15 × 10−258). Mean h2 cis was 0.06 and strongly correlated with beta of the top cis expression quantitative loci (eQTL, ρ = 0.76, p < 10−308) and with estimates from earlier RNA-Seq-based studies. Mean h2 res was 0.20 and correlated with the beta of the corresponding trans-eQTL (ρ = 0.04, p < 1.89 × 10−3) and was significantly higher for genes involved in cytokine-cytokine interactions (p = 4.22 × 10−15), many other immune system pathways, and genes identified in genome-wide association studies for various traits including behavioral disorders and cancer. This study provides a thorough characterization of cis- and trans-h2 estimates of gene expression, which is of value for interpretation of GWAS and gene expression studies

    The Same IκBα Mutation in Two Related Individuals Leads to Completely Different Clinical Syndromes

    Get PDF
    Both innate and adaptive immune responses are dependent on activation of nuclear factor κB (NF-κB), induced upon binding of pathogen-associated molecular patterns to Toll-like receptors (TLRs). In murine models, defects in NF-κB pathway are often lethal and viable knockout mice have severe immune defects. Similarly, defects in the human NF-κB pathway described to date lead to severe clinical disease. Here, we describe a patient with a hyper immunoglobulin M–like immunodeficiency syndrome and ectodermal dysplasia. Monocytes did not produce interleukin 12p40 upon stimulation with various TLR stimuli and nuclear translocation of NF-κB was impaired. T cell receptor–mediated proliferation was also impaired. A heterozygous mutation was found at serine 32 in IκBα. Interestingly, his father has the same mutation but displays complex mosaicism. He does not display features of ectodermal dysplasia and did not suffer from serious infections with the exception of a relapsing Salmonella typhimurium infection. His monocyte function was impaired, whereas T cell function was relatively normal. Consistent with this, his T cells almost exclusively displayed the wild-type allele, whereas both alleles were present in his monocytes. We propose that the T and B cell compartment of the mosaic father arose as a result of selection of wild-type cells and that this underlies the widely different clinical phenotype

    Modifications to the Cauchy–Born rule: Applications in the deformation of single-walled carbon nanotubes

    Get PDF
    AbstractThis paper presents a study of the Cauchy–Born (CB) rule as applied to the deformation analysis of single-walled carbon nanotubes (SWNTs) that are modeled as 2-dimensional manifolds. The C–C bond vectors in the SWNT are assumed to deform according to the local deformation gradient as per the CB rule or a modified version thereof. Aspects of the CB rule related to spatial inhomogeneity of the deformation gradient at the atomic scale are investigated in the context of a specific class of extension–twist deformation problems. Analytic expressions are derived for the deformed bond lengths using the standard CB rule as well as modified versions of the standard CB rule. Since the deformation map is conveniently prescribed in this work, it is possible to compare the performance of these deformation rules with the exact solution (i.e. the exact analytic expression for the deformed bond vectors) given directly by the deformation map. This approach provides insights into the CB rule and its possible modifications for use in more complicated deformations where an explicit deformation map is not available. Specifically, it is concluded that in the case of inhomogeneous deformations at the atomic scale for which the CB rule is only approximate (as demonstrated in Section 1 of this paper), the mean value theorem in calculus can be used as a guide to modify the CB rule and construct a more rigorous and accurate atomistic–continuum connection. The deformed bond lengths are used to formulate an enriched continuum hyperelastic strain energy density function based on interatomic potentials (the multi-body Tersoff–Brenner [Tersoff, J., 1988. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000; Brenner, D.W., 1990. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471] empirical interatomic potential for carbon-carbon bonds is used in this work). The deformation map (and hence the deformation gradient, the bond vectors and the continuum strain energy density) contains certain parameters, some of which are imposed and others determined as a result of energy minimization in the standard variational formulation. Numerical results for kinematic coupling and binding energy per atom are presented in the case of imposed extension and twist deformations on representative chiral, zig-zag and armchair nanotubes using the CB rule and its modifications. These results are compared with the exact solution based on the deformation map which serves as a basis for evaluating the efficacy of these deformation rules. The ideas presented in this paper can also be directly extended to other lattices
    corecore