100 research outputs found

    Space hierarchy theorem revised

    Get PDF
    AbstractWe show that, for an arbitrary function h(n) and each recursive function ℓ(n), that are separated by a nondeterministically fully space constructible g(n), such that h(n)∈Ω(g(n)) but ℓ(n)∉Ω(g(n)), there exists a unary language L in NSPACE(h(n)) that is not contained in NSPACE(ℓ(n)). The same holds for the deterministic case.The main contribution to the well-known Space Hierarchy Theorem is that (i) the language L separating the two space classes is unary (tally), (ii) the hierarchy is independent of whether h(n) or ℓ(n) are in Ω(logn) or in o(logn), (iii) the functions h(n) or ℓ(n) themselves need not be space constructible nor monotone increasing, (iv) the hierarchy is established both for strong and weak space complexity classes. This allows us to present unary languages in such complexity classes as, for example, NSPACE(loglogn·log∗n)⧹NSPACE(loglogn), using a plain diagonalization

    The human cytomegalovirus-encoded G protein- coupled receptor UL33 exhibits oncomodulatory properties

    Get PDF
    Herpesviruses can rewire cellular signaling in host cells by expressing viral G protein- coupled receptors (GPCRs). These viral receptors exhibit homology to human chemokine receptors, but some display constitutive activity and promiscuous G protein coupling. Human cytomegalovirus (HCMV) has been detected in multiple cancers, including glioblastoma, and its genome encodes four GPCRs. One of these receptors, US28, is expressed in glioblastoma and possesses constitutive activity and oncomodulatory properties. UL33, another HCMV-encoded GPCR, also displays constitutive signaling via Gαq, Gαi, and Gαs proteins. However, little is known about the nature and functional effects of UL33-driven signaling. Here, we assessed UL33's signaling repertoire and oncomodulatory potential. UL33 activated multiple proliferative, angiogenic, and inflammatory signaling pathways in HEK293T and U251 glioblastoma cells. Notably, upon infection, UL33 contributed to HCMV-mediated STAT3 activation. Moreover, UL33 increased spheroid growth in vitro and accelerated tumor growth in different in vivo tumor models, including an orthotopic glioblastoma xenograft model. UL33-mediated signaling was similar to that stimulated by US28; however, UL33-induced tumor growth was delayed. Additionally, the spatiotemporal expression of the two receptors only partially overlapped in HCMV-infected glioblastoma cells. In conclusion, our results unveil that UL33 has broad signaling capacity and provide mechanistic insight into its functional effects. UL33, like US28, exhibits oncomodulatory properties, elicited via constitutive activation of multiple signaling pathways. UL33 and US28 might contribute to HCMV's oncomodulatory effects through complementing and converging cellular signaling, and hence UL33 may represent a promising drug target in HCMV-associated malignancies

    Occupational exposure to gases/fumes and mineral dust affect DNA methylation levels of genes regulating expression

    Get PDF
    Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2x)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted

    Cortical glutamate and gamma-aminobutyric acid over the course of a provoked migraine attack, a 7 Tesla magnetic resonance spectroscopy study

    Get PDF
    Enhanced activity of the glutamatergic system has been linked to migraine pathophysiology. The present study aimed to assess the involvement of the glutamatergic system in the onset of attacks. We provoked attacks by infusion of glyceryl trinitrate (GTN; 0.5 µg/kg/min over 20 min) in 24 female episodic migraineurs without aura and 13 female age-matched healthy controls. Over the course of a single day participants were scanned three times at fixed time slots (baseline before GTN infusion, 90 min and 270 min after start of GTN infusion). Single-volume proton magnetic resonance spectra (1H–MRS) were acquired at 7 Tesla from a volume of interest (VOI, 2x2x3 cm) in the visual cortex. We assessed the concentrations of glutamate, its major precursor glutamine, and its product gamma-aminobutyric acid (GABA) over the course of a provoked attack. The preictal state was defined as the period after GTN infusion until the migraine-like headache started, independent of possible experienced premonitory symptoms, and the ictal state was defined as the period with provoked migraine-like headache. Data were analyzed using a linear mixed-effect model for repeated measures. Glutamate and glutamine levels did not change from interictal to the preictal and ictal state. GABA levels increased from interictal towards the preictal state for migraine patients compared with healthy controls. We conclude that high resolution 7T MRS is able to show changes in the glutamatergic system towards a triggered migraine attack, by revealing an increased GABA concentration associated with the onset of a migraine attack

    Controlling bias and inflation in epigenome- and transcriptome-wide association studies using the empirical null distribution

    Get PDF
    We show that epigenome- and transcriptome-wide association studies (EWAS and TWAS) are prone to significant inflation and bias of test statistics, an unrecognized phenomenon introducing spurious findings if left unaddressed. Neither GWAS-based methodology nor state-of-the-art confounder adjustment methods completely remove bias and inflation. We propose a Bayesian method to control bias and inflation in EWAS and TWAS based on estimation of the empirical null distribution. Using simulations and real data, we demonstrate that our method maximizes power while properly controlling the false positive rate. We illustrate the utility of our method in large-scale EWAS and TWAS meta-analyses of age and smoking

    Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene-trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2, known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    Get PDF
    Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and
    • …
    corecore