19 research outputs found

    Effect of Mechanical Stimuli on the Phenotypic Plasticity of Induced Pluripotent Stem-Cell-Derived Vascular Smooth Muscle Cells in a 3D Hydrogel

    Get PDF
    Introduction: Vascular smooth muscle cells (VSMCs) play a pivotal role in vascular homeostasis, with dysregulation leading to vascular complications. Human-induced pluripotent stem-cell (hiPSC)-derived VSMCs offer prospects for personalized disease modeling and regenerative strategies. Current research lacks comparative studies on the impact of three-dimensional (3D) substrate properties under cyclic strain on phenotypic adaptation in hiPSC-derived VSMCs. Here, we aim to investigate the impact of intrinsic substrate properties, such as the hydrogel’s elastic modulus and cross-linking density in a 3D static and dynamic environment, on the phenotypical adaptation of human mural cells derived from hiPSC-derived organoids (ODMCs), compared to aortic VSMCs. Methods and results: ODMCs were cultured in two-dimensional (2D) conditions with synthetic or contractile differentiation medium or in 3D Gelatin Methacryloyl (GelMa) substrates with varying degrees of functionalization and percentages to modulate Young’s modulus and cross-linking density. Cells in 3D substrates were exposed to cyclic, unidirectional strain. Phenotype characterization was conducted using specific markers through immunofluorescence and gene expression analysis. Under static 2D culture, ODMCs derived from hiPSCs exhibited a VSMC phenotype, expressing key mural markers, and demonstrated a level of phenotypic plasticity similar to primary human VSMCs. In static 3D culture, a substrate with a higher Young’s modulus and cross-linking density promoted a contractile phenotype in ODMCs and VSMCs. Dynamic stimulation in the 3D substrate promoted a switch toward a contractile phenotype in both cell types. Conclusion: Our study demonstrates phenotypic plasticity of human ODMCs in response to 2D biological and 3D mechanical stimuli that equals that of primary human VSMCs. These findings may contribute to the advancement of tailored approaches for vascular disease modeling and regenerative strategies.</p

    Endothelial loss of Fzd5 stimulates PKC/Ets1-mediated transcription of Angpt2 and Flt1

    Get PDF
    Aims: Formation of a functional vascular system is essential and its formation is a highly regulated process initiated during embryogenesis, which continues to play important roles throughout life in both health and disease. In previous studies, Fzd5 was shown to be critically involved in this process and here we investigated the molecular mechanism by which endothelial loss of this receptor attenuates angiogenesis. Methods and results: Using short interference RNA-mediated loss-of-function assays, the function and mechanism of signaling via Fzd5 was studied in human endothelial cells (ECs). Our findings indicate that Fzd5 signaling promotes neovessel formation in vitro in a collagen matrix-based 3D co-culture of primary vascular cells. Silencing of Fzd5 reduced EC proliferation, as a result of G0/G1 cell cycle arrest, and decreased cell migration. Furthermore, Fzd5 knockdown resulted in enhanced expression of the factors Angpt2 and Flt1, which are mainly known for their destabilizing effects on the vasculature. In Fzd5-silenced ECs, Angpt2 and Flt1 upregulation was induced by enhanced PKC signaling, without the involvement of canonical Wnt signaling, non-canonical Wnt/Ca2+-mediated activation of NFAT, and non-canonical Wnt/PCP-mediated activation of JNK. We demonstrated that PKC-induced transcription of Angpt2 and Flt1 involved the transcription factor Ets1. Conclusions: The current study demonstrates a pro-angiogenic role of Fzd5, which was shown to be involved in endothelial tubule formation, cell cycle progression and migration, and partly does so by repression of PKC/Ets1-mediated transcription of Flt1 and Angpt2

    Matrix metalloproteinases and tissue inhibitors of metalloproteinases in extracellular matrix remodeling during left ventricular diastolic dysfunction and heart failure with preserved ejection fraction: A systematic review and meta-analysis

    Get PDF
    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling

    Transcriptome analysis reveals microvascular endothelial cell-dependent pericyte differentiation

    Get PDF
    Microvascular homeostasis is strictly regulated, requiring close interaction between endothelial cells and pericytes. Here, we aimed to improve our understanding of how microvascular crosstalk affects pericytes. Human-derived pericytes, cultured in absence, or presence of human endothelial cells, were studied by RNA sequencing. Compared with mono-cultured pericytes, a total of 6704 genes were differentially expressed in co-cultured pericytes. Direct endothelial contact induced transcriptome profiles associated with pericyte maturation, suppression of extracellular matrix production, proliferation, and morphological adaptation. In vitro studies confirmed enhanced pericyte proliferation mediated by endothelial-derived PDGFB and pericyte-derived HB-EGF and FGF2. Endothelial-induced PLXNA2 and ACTR3 upregulation also triggered pericyte morphological adaptation. Pathway analysis predicted a key role for TGFβ signaling in endothelial-induced pericyte differentiation, whereas the effect of signaling via gap- and adherens junctions was limited. We demonstrate that endothelial cells have a major impact on the transcriptional profile of pericytes, regulating endothelial-induced maturation, proliferation, and suppression of ECM production

    Extracellular matrix analysis of human renal arteries in both quiescent and active vascular state

    Get PDF
    In vascular tissue engineering strategies, the addition of vascular-specific extracellular matrix (ECM) components may better mimic the in vivo microenvironment and potentially enhance cell–matrix interactions and subsequent tissue growth. For this purpose, the exact composition of the human vascular ECM first needs to be fully characterized. Most research has focused on characterizing ECM components in mature vascular tissue; however, the developing fetal ECM matches the active environment required in vascular tissue engineering more closely. Consequently, we characterized the ECM protein composition of active (fetal) and quiescent (mature) renal arteries using a proteome analysis of decellularized tissue. The obtained human fetal renal artery ECM proteome dataset contains higher levels of 15 ECM proteins versus the mature renal artery ECM proteome, whereas 16 ECM proteins showed higher levels in the mature tissue compared to fetal. Elastic EC

    H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts

    Get PDF
    BACKGROUND: H3K27ac histone acetylome changes contribute to the phenotypic response in heart diseases, particularly in end-stage heart failure. However, such epigenetic alterations have not been systematically investigated in remodeled non-failing human hearts. Therefore, valuable insight into cardiac dysfunction in early remodeling is lacking. This study aimed to reveal the acetylation changes of chromatin regions in response to myocardial remodeling and their correlations to transcriptional changes of neighboring genes. RESULTS: We detected chromatin regions with differential acetylation activity (DARs; Padj. < 0.05) between remodeled non-failing patient hearts and healthy donor hearts. The acetylation level of the chromatin region correlated with its RNA polymerase II occupancy level and the mRNA expression level of its adjacent gene per sample. Annotated genes from DARs were enriched in disease-related pathways, including fibrosis and cell metabolism regulation. DARs that change in the same direction have a tendency to cluster together, suggesting the well-reorganized chromatin architecture that facilitates the interactions of regulatory domains in response to myocardial remodeling. We further show the differences between the acetylation level and the mRNA expression level of cell-type-specific markers for cardiomyocytes and 11 non-myocyte cell types. Notably, we identified transcriptome factor (TF) binding motifs that were enriched in DARs and defined TFs that were predicted to bind to these motifs. We further showed 64 genes coding for these TFs that were differentially expressed in remodeled myocardium when compared with controls. CONCLUSIONS: Our study reveals extensive novel insight on myocardial remodeling at the DNA regulatory level. Differences between the acetylation level and the transcriptional level of cell-type-specific markers suggest additional mechanism(s) between acetylome and transcriptome. By integrating these two layers of epigenetic profiles, we further provide promising TF-encoding genes that could serve as master regulators of myocardial remodeling. Combined, our findings highlight the important role of chromatin regulatory signatures in understanding disease etiology

    Extracellular Matrix Analysis of Human Renal Arteries in Both Quiescent and Active Vascular State

    No full text
    In vascular tissue engineering strategies, the addition of vascular-specific extracellular matrix (ECM) components may better mimic the in vivo microenvironment and potentially enhance cell&ndash;matrix interactions and subsequent tissue growth. For this purpose, the exact composition of the human vascular ECM first needs to be fully characterized. Most research has focused on characterizing ECM components in mature vascular tissue; however, the developing fetal ECM matches the active environment required in vascular tissue engineering more closely. Consequently, we characterized the ECM protein composition of active (fetal) and quiescent (mature) renal arteries using a proteome analysis of decellularized tissue. The obtained human fetal renal artery ECM proteome dataset contains higher levels of 15 ECM proteins versus the mature renal artery ECM proteome, whereas 16 ECM proteins showed higher levels in the mature tissue compared to fetal. Elastic ECM proteins EMILIN1 and FBN1 are significantly enriched in fetal renal arteries and are mainly produced by cells of mesenchymal origin. We functionally tested the role of EMILIN1 and FBN1 by anchoring the ECM secreted by vascular smooth muscle cells (SMCs) to glass coverslips. This ECM layer was depleted from either EMILIN1 or FBN1 by using siRNA targeting of the SMCs. Cultured endothelial cells (ECs) on this modified ECM layer showed alterations on the transcriptome level of multiple pathways, especially the Rho GTPase controlled pathways. However, no significant alterations in adhesion, migration or proliferation were observed when ECs were cultured on EMILIN1- or FNB1-deficient ECM. To conclude, the proteome analysis identified unique ECM proteins involved in the embryonic development of renal arteries. Alterations in transcriptome levels of ECs cultured on EMILIN1- or FBN1-deficient ECM showed that these candidate proteins could affect the endothelial (regenerative) response

    Extracellular matrix analysis of human renal arteries in both quiescent and active vascular state

    Get PDF
    In vascular tissue engineering strategies, the addition of vascular-specific extracellular matrix (ECM) components may better mimic the in vivo microenvironment and potentially enhance cell–matrix interactions and subsequent tissue growth. For this purpose, the exact composition of the human vascular ECM first needs to be fully characterized. Most research has focused on characterizing ECM components in mature vascular tissue; however, the developing fetal ECM matches the active environment required in vascular tissue engineering more closely. Consequently, we characterized the ECM protein composition of active (fetal) and quiescent (mature) renal arteries using a proteome analysis of decellularized tissue. The obtained human fetal renal artery ECM proteome dataset contains higher levels of 15 ECM proteins versus the mature renal artery ECM proteome, whereas 16 ECM proteins showed higher levels in the mature tissue compared to fetal. Elastic EC

    CMTM4 regulates angiogenesis by promoting cell surface recycling of VE-cadherin to endothelial adherens junctions

    No full text
    Vascular endothelial (VE) cadherin is a key component of endothelial adherens junctions (AJs) and plays an important role in maintaining vascular integrity. Endocytosis of VE-cadherin regulates junctional strength and a decrease of surface VE-cadherin reduces vascular stability. However, disruption of AJs is also a requirement for vascular sprouting. Identifying novel regulators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we evaluated the angiogenic potential of (CKLF-like MARVEL transmembrane domain 4) CMTM4 and assessed in which molecular pathway CMTM4 is involved during angiogenesis. Using a 3D vascular assay composed of GFP-labeled HUVECs and dsRED-labeled pericytes, we demonstrated in vitro that siRNA-mediated CMTM4 silencing impairs vascular sprouting. In vivo, CMTM4 silencing by morpholino injection in zebrafish larvae inhibits intersomitic vessel growth. Intracellular staining revealed that CMTM4 colocalizes with Rab4+ and Rab7+ vesicles, both markers of the endocytic trafficking pathway. CMTM4 colocalizes with both membrane-bound and internalized VE-cadherin. Adenovirus-mediated CMTM4 overexpression enhances the endothelial endocytic pathway, in particular the rapid recycling pathway, shown by an increase in early endosomal antigen-1 positive (EEA1+), Rab4+, Rab11+ , and Rab7+ vesicles. CMTM4 overexpression enhances membrane-bound VE-cadherin internalization, whereas CMTM4 knockdown decreases internalization of VE-cadherin. CMTM4 overexpression promotes endothelial barrier function, shown by an increase in recovery of transendothelial electrical resistance (TEER) after thrombin stimulation. We have identified in this study a novel regulatory function for CMTM4 in angiogenesis. CMTM4 plays an important role in the turnover of membrane-bound VE-cadherin at AJs, mediating endothelial barrier function and controlling vascular sprouting

    Effect of Mechanical Stimuli on the Phenotypic Plasticity of Induced Pluripotent Stem-Cell-Derived Vascular Smooth Muscle Cells in a 3D Hydrogel

    Get PDF
    Introduction: Vascular smooth muscle cells (VSMCs) play a pivotal role in vascular homeostasis, with dysregulation leading to vascular complications. Human-induced pluripotent stem-cell (hiPSC)-derived VSMCs offer prospects for personalized disease modeling and regenerative strategies. Current research lacks comparative studies on the impact of three-dimensional (3D) substrate properties under cyclic strain on phenotypic adaptation in hiPSC-derived VSMCs. Here, we aim to investigate the impact of intrinsic substrate properties, such as the hydrogel’s elastic modulus and cross-linking density in a 3D static and dynamic environment, on the phenotypical adaptation of human mural cells derived from hiPSC-derived organoids (ODMCs), compared to aortic VSMCs. Methods and results: ODMCs were cultured in two-dimensional (2D) conditions with synthetic or contractile differentiation medium or in 3D Gelatin Methacryloyl (GelMa) substrates with varying degrees of functionalization and percentages to modulate Young’s modulus and cross-linking density. Cells in 3D substrates were exposed to cyclic, unidirectional strain. Phenotype characterization was conducted using specific markers through immunofluorescence and gene expression analysis. Under static 2D culture, ODMCs derived from hiPSCs exhibited a VSMC phenotype, expressing key mural markers, and demonstrated a level of phenotypic plasticity similar to primary human VSMCs. In static 3D culture, a substrate with a higher Young’s modulus and cross-linking density promoted a contractile phenotype in ODMCs and VSMCs. Dynamic stimulation in the 3D substrate promoted a switch toward a contractile phenotype in both cell types.Conclusion: Our study demonstrates phenotypic plasticity of human ODMCs in response to 2D biological and 3D mechanical stimuli that equals that of primary human VSMCs. These findings may contribute to the advancement of tailored approaches for vascular disease modeling and regenerative strategies.</p
    corecore