165 research outputs found

    Targeted RNA-Sequencing Enables Detection of Relevant Translocations and Single Nucleotide Variants and Provides a Method for Classification of Hematological Malignancies-RANKING

    Get PDF
    BACKGROUND: Patients with hematological malignancies (HMs) carry a wide range of chromosomal and molecular abnormalities that impact their prognosis and treatment. Since no current technique can detect all relevant abnormalities, technique(s) are chosen depending on the reason for referral, and abnormalities can be missed. We tested targeted transcriptome sequencing as a single platform to detect all relevant abnormalities and compared it to current techniques. MATERIAL AND METHODS: We performed RNA-sequencing of 1385 genes (TruSight RNA Pan-Cancer, Illumina) in bone marrow from 136 patients with a primary diagnosis of HM. We then applied machine learning to expression profile data to perform leukemia classification, a method we named RANKING. Gene fusions for all the genes in the panel were detected, and overexpression of the genes EVI1, CCND1, and BCL2 was quantified. Single nucleotide variants/indels were analyzed in acute myeloid leukemia (AML), myelodysplastic syndrome and patients with acute lymphoblastic leukemia (ALL) using a virtual myeloid (54 genes) or lymphoid panel (72 genes). RESULTS: RANKING correctly predicted the leukemia classification of all AML and ALL samples and improved classification in 3 patients. Compared to current methods, only one variant was missed, c.2447A>T in KIT (RT-PCR at 10(-4)), and BCL2 overexpression was not seen due to a t(14; 18)(q32; q21) in 2% of the cells. Our RNA-sequencing method also identified 6 additional fusion genes and overexpression of CCND1 due to a t(11; 14)(q13; q32) in 2 samples. CONCLUSIONS: Our combination of targeted RNA-sequencing and data analysis workflow can improve the detection of relevant variants, and expression patterns can assist in establishing HM classification

    Genetic Susceptibility and Predictors of Paradoxical Reactions in Buruli Ulcer

    Get PDF
    Buruli ulcer (BU) is the third most frequent mycobacterial disease in immunocompetent persons after tuberculosis and leprosy. During the last decade, eight weeks of antimicrobial treatment has become the standard of care. This treatment may be accompanied by transient clinical deterioration, known as paradoxical reaction. We investigate the incidence and the risks factors associated with paradoxical reaction in BU.The lesion size of participants was assessed by careful palpation and recorded by serial acetate sheet tracings. For every time point, surface area was compared with the previous assessment. All patients received antimicrobial treatment for 8 weeks. Serum concentration of 25-hydroxyvitamin D, the primary indicator of vitamin D status, was determined in duplex for blood samples at baseline by a radioimmunoassay. We genotyped four polymorphisms in the SLC11A1 gene, previously associated with susceptibility to BU. For testing the association of genetic variants with paradoxical responses, we used a binary logistic regression analysis with the occurrence of a paradoxical response as the dependent variable.Paradoxical reaction occurred in 22% of the patients; the reaction was significantly associated with trunk localization (p = .039 by Χ(2)), larger lesions (p = .021 by Χ(2)) and genetic factors. The polymorphisms 3'UTR TGTG ins/ins (OR 7.19, p < .001) had a higher risk for developing paradoxical reaction compared to ins/del or del/del polymorphisms.Paradoxical reactions are common in BU. They are associated with trunk localization, larger lesions and polymorphisms in the SLC11A1 gene

    A Genome-Wide Linkage Study for Chronic Obstructive Pulmonary Disease in a Dutch Genetic Isolate Identifies Novel Rare Candidate Variants

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a complex and heritable disease, associated with multiple genetic variants. Specific familial types of COPD may be explained by rare variants, which have not been widely studied. We aimed to discover rare genetic variants underlying COPD through a genome-wide linkage scan. Affected-only analysis was performed using the 6K Illumina Linkage IV Panel in 142 cases clustered in 27 families from a genetic isolate, the Erasmus Rucphen Family (ERF) study. Potential causal variants were identified by searching for shared rare variants in the exome-sequence data of the affected members of the families contributing most to the linkage peak. The identified rare variants were then tested for association with COPD in a large meta-analysis of several cohorts. Significant evidence for linkage was observed on chromosomes 15q14-15q25 [logarithm of the odds (LOD) score = 5.52], 11p15.4-11q14.1 (LOD = 3.71) and 5q14.3-5q33.2 (LOD = 3.49). In the chromosome 15 peak, that harbors the known COPD locus for nicotinic receptors, and in the chromosome 5 peak we could not identify shared variants. In the chromosome 11 locus, we identified four rare (minor allele frequency (MAF) <0.02), predicted pathogenic, missense variants. These were shared among the affected family members. The identified variants localize to genes including neuroblast differentiation-associated protein (AHNAK), previously associated with blood biomarkers in COPD, phospholipase C Beta 3 (PLCB3), shown to increase airway hyper-responsiveness, solute carrier family 22-A11 (SLC22A11), involved in amino acid metabolism and ion transport, and metallothionein-like protein 5 (MTL5), involved in nicotinate and nicotinamide metabolism. Association of SLC22A11 and MTL5 variants were confirmed in the meta-analysis of 9,888 cases and 27,060 controls. In conclusion, we have identified novel rare variants in plausible genes related to COPD. Further studies utilizing large sample whole-genome sequencing should further confirm the associations at chromosome 11 and investigate the chromosome 15 and 5 linked regions

    Strategies in Rapid Genetic Diagnostics of Critically Ill Children:Experiences From a Dutch University Hospital

    Get PDF
    Background: Genetic disorders are a substantial cause of infant morbidity and mortality and are frequently suspected in neonatal intensive care units. Non-specific clinical presentation or limitations to physical examination can result in a plethora of genetic testing techniques, without clear strategies on test ordering. Here, we review our 2-years experiences of rapid genetic testing of NICU patients in order to provide such recommendations. Methods: We retrospectively included all patients admitted to the NICU who received clinical genetic consultation and genetic testing in our University hospital. We documented reasons for referral for genetic consultation, presenting phenotypes, differential diagnoses, genetic testing requested and their outcomes, as well as the consequences of each (rapid) genetic diagnostic approach. We calculated diagnostic yield and turnaround times (TATs). Results: Of 171 included infants that received genetic consultation 140 underwent genetic testing. As a result of testing as first tier, 13/14 patients received a genetic diagnosis from QF-PCR; 14/115 from SNP-array; 12/89 from NGS testing, of whom 4/46 were diagnosed with a small gene panel and 8/43 with a large OMIM-morbid based gene panel. Subsequent secondary or tertiary analysis and/or additional testing resulted in five more diagnoses. TATs ranged from 1 day (QF-PCR) to a median of 14 for NGS and SNP-array testing, with increasing TAT in particular when many consecutive tests were performed. Incidental findings were detected in 5/140 tested patients (3.6%). Conclusion: We recommend implementing a broad NGS gene panel in combination with CNV calling as the first tier of genetic testing for NICU patients given the often unspecific phenotypes of ill infants and the high yield of this large panel

    Feasibility of Follow-Up Studies and Reclassification in Spinocerebellar Ataxia Gene Variants of Unknown Significance

    Get PDF
    Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests

    CAPICE:a computational method for Consequence-Agnostic Pathogenicity Interpretation of Clinical Exome variations

    Get PDF
    Exome sequencing is now mainstream in clinical practice. However, identification of pathogenic Mendelian variants remains time-consuming, in part, because the limited accuracy of current computational prediction methods requires manual classification by experts. Here we introduce CAPICE, a new machine-learning-based method for prioritizing pathogenic variants, including SNVs and short InDels. CAPICE outperforms the best general (CADD, GAVIN) and consequence-type-specific (REVEL, ClinPred) computational prediction methods, for both rare and ultra-rare variants. CAPICE is easily added to diagnostic pipelines as pre-computed score file or command-line software, or using online MOLGENIS web service with API. Download CAPICE for free and open-source (LGPLv3) at https://github.com/molgenis/capice.

    Occupational exposure to gases/fumes and mineral dust affect DNA methylation levels of genes regulating expression

    Get PDF
    Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2×)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six minera
    corecore