564 research outputs found

    Extended reagions of radio emission not associated with the AGN phenomenon as sources of acceleration of cosmic rays: The case of cD galaxies

    Full text link
    Diffuse, non-thermal extended emission not associated with the AGN phenomenon, found in many clusters of galaxies hosted by an AGN, are related to the acceleration of cosmic rays. In the current work we present preliminary evidence of absence of such formations in clusters of galaxies hosted by optically identified cD galaxies. Our subsample consists of three powerful low redshift radiogalaxies, centered in poor clusters of galaxies. We have searched for radio relics and (mini)halos which could be forming as a result of the confinement of cosmic rays by bubbles creayed by the AGN. We report on the work in progress.Comment: 4 pages, Conference HEPRO II

    A Companion Galaxy to the Post-Starburst Quasar UN J1025-0040

    Get PDF
    UN J1025-0040 is a quasar at z = 0.6344 that shows an extremely bright post starburst population of age ~ 400 Myr (Brotherton et al. 1999). Images of UN J1025-0040 show a nearly stellar object 4.2 arcseconds SSW of the quasar. We present imaging and spectroscopy that confirm that this object is a companion galaxy at redshift z = 0.6341. We estimate an age of ~ 800 Myr for the dominant stellar population in the companion. The companion appears to be interacting with the quasar host galaxy, and this interaction may have triggered both the starburst and the quasar activity in UN J1025-0040.Comment: 8 pages plus 4 figures (2 postscript, 2 jpg). Postscript version available at http://www.ifa.hawaii.edu/~canaguby/preprints.html To appear in the January 2000 issue of A

    HST images and properties of the most distant radio galaxies

    Get PDF
    We present Hubble Space Telescope images of 11 high redshift radio galaxies (between z=2.3z=2.3 and z=3.6z=3.6). The galaxies were observed with the WFPC2 camera in a broad band filter (F606W or F707W, roughly equivalent to V or R-band), for 2 orbits each. We find that on the scale of the HST observations there is a wide variety of morphological structures of the hosting galaxies: most objects have a clumpy, irregular appearance, consisting of a bright nucleus and a number of smaller components, suggestive of merging systems. Some observed structures could be due (at least partly) to the presence of dust distributed through the galaxies. The UV continuum emission is generally elongated and aligned with the axis of the radio sources, however the characteristics of the ``alignment effect'' differ from case to case, suggesting that the phenomenon cannot be explained by a single physical mechanism. We compare the properties of our radio galaxies with those of the UV dropout galaxies and conclude that (i) the most massive radio galaxies may well evolve from an aggregate of UV dropout galaxies and (ii) high redshift radio galaxies probably evolve into present day brightest cluster galaxies.Comment: 22 pages, 30 figures, accepted by A&

    Approximating a Behavioural Pseudometric without Discount for<br> Probabilistic Systems

    Full text link
    Desharnais, Gupta, Jagadeesan and Panangaden introduced a family of behavioural pseudometrics for probabilistic transition systems. These pseudometrics are a quantitative analogue of probabilistic bisimilarity. Distance zero captures probabilistic bisimilarity. Each pseudometric has a discount factor, a real number in the interval (0, 1]. The smaller the discount factor, the more the future is discounted. If the discount factor is one, then the future is not discounted at all. Desharnais et al. showed that the behavioural distances can be calculated up to any desired degree of accuracy if the discount factor is smaller than one. In this paper, we show that the distances can also be approximated if the future is not discounted. A key ingredient of our algorithm is Tarski's decision procedure for the first order theory over real closed fields. By exploiting the Kantorovich-Rubinstein duality theorem we can restrict to the existential fragment for which more efficient decision procedures exist

    Implications of pc and kpc jet asymmetry to the cosmic ray acceleration

    Full text link
    We probe the role that the directional asymmetry, between relativistic outflows and kilo-parsec scale jets, play in the acceleration of cosmic rays. For this reason we use two powerful, nearby Active Galactic Nuclei (AGNs). These radio galaxies are atypical compared to the usual AGN as they contain ring-like features instead of hotspots. Our VLBI radio data have revealed a substantial misalignment between their small and large scale jets. Taking into account the overall information we have obtained about the AGNs themselves (VLA and VLBI radio data at 18 cm) and their clusters (X-ray observations) our study supports the present ideas of powerful radiogalaxies (radio quiet and radio loud) being sources of cosmic rays as well as their ability to accelarate the latter to ultra high energies.Comment: 4 pages, Conference HEPRO II

    Triggered Star Formation in a Massive Galaxy at z=3.8: 4C41.17

    Get PDF
    Spectropolarimetric observations obtained with the W. M. Keck Telescope of the z=3.8 radio galaxy 4C41.17 show that the UV continuum emission from this galaxy, which is aligned with the radio axis, is unpolarized (P[2sigma] < 2.4%). This implies that scattered AGN light, which is generally the dominant contributor to the rest-frame UV emission in z~1 radio galaxies, is unlikely to be a major component of the UV flux from 4C41.17. The spectrum shows absorption lines that are similar to those detected in the spectra of the recently discovered population of star forming galaxies at z~2-3. A galaxian outflow may contribute partially to the low ionization absorption lines; however, the high velocity wings of the high ionization lines are unlikely to be dominated by a galaxian wind since the implied outflow mass is very large. The detection of stellar absorption lines, the shape of the SiIV profile, the unpolarized continuum, the inability of any AGN-related processes to account for the UV flux, and the similarity of the UV continuum spectra of 4C41.17 and the nearby starburst region NGC 1741B1 suggest that the UV light in 4C41.17 is dominated by young stars. If so, the implied star-formation rate is roughly 140-1100Msun/yr. We discuss the possibility that star formation in 4C41.17 was triggered by the radio source. Our data are consistent with the hypothesis that 4C41.17 is undergoing its major epoch of star formation at z~4, and that by z~1 it will have evolved to have spectral and morphological properties similar to those observed in known z~1 powerful radio galaxies.Comment: 28 pages (Latex text + figures); Accepted for publication in The Astrophysical Journal (Dec 1, 1997 issue

    Radiative Shock-Induced Collapse of Intergalactic Clouds

    Full text link
    Accumulating observational evidence for a number of radio galaxies suggests an association between their jets and regions of active star formation. The standard picture is that shocks generated by the jet propagate through an inhomogeneous medium and trigger the collapse of overdense clouds, which then become active star-forming regions. In this contribution, we report on recent hydrodynamic simulations of radiative shock-cloud interactions using two different cooling models: an equilibrium cooling-curve model assuming solar metallicities and a non-equilibrium chemistry model appropriate for primordial gas clouds. We consider a range of initial cloud densities and shock speeds in order to quantify the role of cooling in the evolution. Our results indicate that for moderate cloud densities (>1 cm^{-3}) and shock Mach numbers (<20), cooling processes can be highly efficient and result in more than 50% of the initial cloud mass cooling to below 100 K. We also use our results to estimate the final H_2 mass fraction for the simulations that use the non-equilibrium chemistry package. This is an important measurement, since H_2 is the dominant coolant for a primordial gas cloud. We find peak H_2 mass fractions of >0.01 and total H_2 mass fractions of >10^{-5} for the cloud gas. Finally, we compare our results with the observations of jet-induced star formation in ``Minkowski's Object.'' We conclude that its morphology, star formation rate (~ 0.3M_solar/yr) and stellar mass (~ 1.2 x 10^7 M_solar) can be explained by the interaction of a 90,000 km/s jet with an ensemble of moderately dense (~ 10 cm^{-3}), warm (10^4 K) intergalactic clouds in the vicinity of its associated radio galaxy at the center of the galaxy cluster.Comment: 30 pages, 7 figures, submitted to Astrophysical Journa
    • …
    corecore