22 research outputs found

    Whole-body insulin clearance in people with type 2 diabetes and normal kidney function:Relationship with glomerular filtration rate, renal plasma flow, and insulin sensitivity

    Get PDF
    OBJECTIVE: Kidney insulin clearance, proposed to be the main route of extra-hepatic insulin clearance, occurs in tubular cells following glomerular filtration and peritubular uptake, a process that may be impaired in people with type 2 diabetes (T2D) and/or impaired kidney function. Human studies that investigated kidney insulin clearance are limited by the invasive nature of the measurement. Instead, we evaluated relationships between whole-body insulin clearance, and gold-standard measured kidney function and insulin sensitivity in adults with T2D and normal kidney function. RESEARCH DESIGN AND METHODS: We determined insulin, inulin/iohexol and para-aminohippuric acid (PAH) clearances during a hyperinsulinemic-euglycemic clamp to measure whole-body insulin clearance and kidney function. Insulin sensitivity was expressed by glucose infusion rate (M value). Associations between whole-body insulin clearance, kidney function and insulin sensitivity were examined using univariable and multivariable linear regressions models. RESULTS: We investigated 44 predominantly male (77%) T2D adults aged 63 ± 7, with fat mass 34.5 ± 9 kg, lean body mass 63.0 ± 11.8 kg, and HbA1c 7.4 ± 0.6%. Average whole-body insulin clearance was 1188 ± 358 mL/min. Mean GFR was 110 ± 22 mL/min, mean ERPF 565 ± 141 mL/min, and M value averaged 3.9 ± 2.3 mg/min. Whole-body insulin clearance was positively correlated with lean body mass, ERPF and insulin sensitivity, but not with GFR. ERPF explained 6% of the variance when entered in a nested multivariable linear regression model op top of lean body mass (25%) and insulin sensitivity (15%). CONCLUSIONS: In adults with T2D and normal kidney function, whole-body insulin clearance was predicted best by lean body mass and insulin sensitivity, and to a lesser extent by ERPF. GFR was not associated with whole-body insulin clearance. In contrast to prior understanding, this suggests that in this population kidney insulin clearance may not play such a dominant role in whole-body insulin clearance

    SGLT2 inhibition versus sulfonylurea treatment effects on electrolyte and acid-base balance:secondary analysis of a clinical trial reaching glycemic equipoise: Tubular effects of SGLT2 inhibition in Type 2 diabetes

    Get PDF
    Sodium-glucose transporter (SGLT)2 inhibitors increase plasma magnesium and plasma phosphate and may cause ketoacidosis, but the contribution of improved glycemic control to these observations as well as effects on other electrolytes and acid-base parameters remain unknown. Therefore, our objective was to compare the effects of SGLT2 inhibitors dapagliflozin and sulfonylurea gliclazide on plasma electrolytes, urinary electrolyte excretion, and acid-base balance in people with Type 2 diabetes (T2D). We assessed the effects of dapagliflozin and gliclazide treatment on plasma electrolytes and bicarbonate, 24-hour urinary pH and excretions of electrolytes, ammonium, citrate, and sulfate in 44 metformin-treated people with T2D and preserved kidney function. Compared with gliclazide, dapagliflozin increased plasma chloride by 1.4 mmol/l (95% CI 0.4-2.4), plasma magnesium by 0.03 mmol/l (95% CI 0.01-0.06), and plasma sulfate by 0.02 mmol/l (95% CI 0.01-0.04). Compared with baseline, dapagliflozin also significantly increased plasma phosphate, but the same trend was observed with gliclazide. From baseline to week 12, dapagliflozin increased the urinary excretion of citrate by 0.93 ± 1.72 mmol/day, acetoacetate by 48 μmol/day (IQR 17-138), and β-hydroxybutyrate by 59 μmol/day (IQR 0-336), without disturbing acid-base balance. In conclusion, dapagliflozin increases plasma magnesium, chloride, and sulfate compared with gliclazide, while reaching similar glucose-lowering in people with T2D. Dapagliflozin also increases urinary ketone excretion without changing acid-base balance. Therefore, the increase in urinary citrate excretion by dapagliflozin may reflect an effect on cellular metabolism including the tricarboxylic acid cycle. This potentially contributes to kidney protection

    Skin microvascular function and renal hemodynamics in overweight patients with type 2 diabetes: A cross-sectional study

    No full text
    Objective: Diabetic kidney disease is a microvascular complication of diabetes. Here, we assessed the association between skin microvascular function and renal hemodynamic function in a cohort of well-phenotyped adults with type 2 diabetes (T2D). Methods: We included 81 overweight/obese adults (age: 62 ± 8 years; BMI: 32 ± 4 kg/m2) with well-controlled T2D and no renal impairment. Skin microvascular function was assessed by nailfold capillary density in rest and after arterial occlusion (ie, peak capillary density). Renal hemodynamic functions (ie, measured glomerular filtration rate [mGFR], effective renal blood flow [ERBF], filtration fraction [FF], and effective renal vascular resistance [ERVR]) were assessed by combined inulin and para-aminohippurate clearances and blood pressure measurements. Results: Skin capillary density was 45 ± 10 capillaries/mm2 at baseline and 57 ± 11 capillaries/mm2 during post-occlusive peak; mGFR averaged 108 ± 20 ml/min. In multivariable regression analyses, positive associations between capillary density during post-occlusive peak and mGFR (β = 0.224; p = 0.022) and ERBF (β = 0.203; p = 0.020) and a positive trend for hyperemia and mGFR (β = 0.391; p = 0.053) were observed, while a negative association for post-occlusive capillary density with ERVR (β = −0.196; p = 0.027) was found. Conclusion: These findings indicate that microvascular dysfunction in overweight adults with T2D is associated with lower mGFR and ERPF and higher ERVR. We hypothesize that increased renal vascular resistance may contribute to glomerular dysfunction due to impaired renal perfusion

    Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment

    No full text
    An absolute, supraphysiologic elevation in GFR is observed early in the natural history in 10%-67% and 6%-73% of patients with type 1 and type 2 diabetes, respectively. Moreover, at the single-nephron level, diabetes-related renal hemodynamic alterations as an adaptation to reduction in functional nephron mass and/or in response to prevailing metabolic and (neuro)hormonal stimuli increase glomerular hydraulic pressure and transcapillary convective flux of ultrafiltrate and macromolecules. This phenomenon, known as glomerular hyperfiltration, classically has been hypothesized to predispose to irreversible nephron damage, thereby contributing to initiation and progression of kidney disease in diabetes. However, dedicated studies with appropriate diagnostic measures and clinically relevant end points are warranted to confirm this assumption. In this review, we summarize the hitherto proposed mechanisms involved in diabetic hyperfiltration, focusing on ultrastructural, vascular, and tubular factors. Furthermore, we review available evidence on the clinical significance of hyperfiltration in diabetes and discuss currently available and emerging interventions that may attenuate this renal hemodynamic abnormality. The revived interest in glomerular hyperfiltration as a prognostic and pathophysiologic factor in diabetes may lead to improved and timely detection of (progressive) kidney disease, and could provide new therapeutic opportunities in alleviating the renal burden in this population

    The osteoblast: Linking glucocorticoid-induced osteoporosis and hyperglycaemia? A post-hoc analysis of a randomised clinical trial

    No full text
    Hypothesis: Glucocorticoids (GCs) induce osteoporosis predominantly by inhibiting osteoblast activity. We hypothesised that osteoblastic factors could also be linked to GC-induced adverse metabolic effects. Methods: We performed a post-hoc analysis of a randomised, placebo-controlled, double blind, dose-response intervention study involving 32 healthy males (age: 22 ± 3 years; BMI 22.4 ± 1.7 kg/m2) who were allocated to prednisolone (PRED) 7.5 mg once daily (n = 12), PRED 30 mg once daily (n = 12), or placebo (n = 8) for two weeks using block randomisation. Mean outcomes measures included osteocalcin, N-terminal propeptide of type 1 procollagen (P1NP) and their relation to glucose and lipid metabolism, measured by stable isotopes, before and at 2 weeks of treatment, in the fasted state and during a two-step hyperinsulinaemic clamp. Results: Osteocalcin and P1NP concentrations were dose-dependently decreased by PRED treatment (p < 0.001 both). PRED dosages dose-dependently reduced sensitivity of the liver and skeletal muscle for insulin (p < 0.001 both) and impaired suppression of lipolysis mediated by insulin (p < 0.01). In multivariate analyses, GC-induced changes in osteocalcin concentrations related to reduces hepatic insulin sensitivity (β = −0.315; p = 0.044). In addition, GC-induced changes in P1NP were negatively related to changes in insulin-mediated suppression of hepatic glucose production (r = −0.582; p = 0.001), and were positively related to insulin-stimulated glucose uptake (r = 0.638; p < 0.001). Finally, changes in PN1P were negatively related to changes in fasting hypertriglyceridemia (r = −0.499; p = 0.004) and insulin-induced suppression of lipolysis rates (r = −0.494; p = 0.006). Conclusion: GC treatment alters osteoblastic function which is associated with several adverse metabolic effects of GC treatment. Future causal studies are needed to assess the specific mediator(s) by which the osteoblast alters intermediary metabolism. Clinical Trial Registration Number: ISRCTN83991850

    Exposure–Response Analysis of the Sodium–Glucose Cotransporter-2 Inhibitors Dapagliflozin and Empagliflozin on Kidney Hemodynamics in Patients with Type 2 Diabetes

    Get PDF
    Sodium–glucose cotransporter-2 (SGLT2) inhibitors improve markers for renal and cardiovascular outcomes in patients with and without type 2 diabetes (T2D). To assess whether individual differences in plasma drug exposure can explain inter-individual response variation, we characterized the exposure–response relationship for two SGLT2 inhibitors on several clinical and kidney hemodynamic variables. Data were obtained from two studies, RED and RECOLAR, assessing the effects of once-daily 10 mg dapagliflozin or empagliflozin, respectively, on kidney hemodynamics in patients with T2D. Individual plasma exposure was estimated using non-compartmental analyses and exposure–response relationships were assessed using linear mixed-effects models. In 23 patients participating in RED, the dapagliflozin geometric mean apparent area under the concentration-time curve during one dosing interval at steady state (AUC0–tau,ss) was 1153.1 µg/L*h (coefficient of variation (CV) 81.8%) and associated, per doubling, with decreases in body weight (0.29 kg, p < 0.001), systolic blood pressure (0.80 mmHg, p = 0.002), measured glomerular filtration rate (mGFR) (0.83 mL/min, p = 0.03), and filtration fraction (0.09%, p = 0.04). In 20 patients participating in RECOLOR, the empagliflozin geometric mean AUC0–tau,ss was 2035.7 nmol/L*h (CV 48.4%) and associated, per doubling, with decreases in body weight (0.13 kg, p = 0.002), systolic blood pressure (0.65 mmHg, p = 0.045), and mGFR (0.78 mL/min, p = 0.002). To conclude, dapagliflozin and empagliflozin plasma exposure was highly variable between patients and associated with inter-individual variation in response variables

    Insulin Sensitivity and Renal Hemodynamic Function in Metformin-Treated Adults With Type 2 Diabetes and Preserved Renal Function

    No full text
    OBJECTIVE: Impaired insulin sensitivity is associated with hyperfiltration (i.e., elevated glomerular filtration rate [GFR]) in adolescents with type 2 diabetes (T2D) and adults with prediabetes. Yet, these relationships are based on studies that relied on estimated GFR (eGFR), estimates of insulin sensitivity, or both. We aimed to verify the relationship between insulin sensitivity and renal hemodynamic function by gold standard methods in adults with T2D. RESEARCH DESIGN AND METHODS: Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp (M value) (glucose infusion rate in mg/kglean/min) and renal hemodynamic function by urinary inulin (GFR) and para-aminohippuric acid (effective renal plasma flow [ERPF]) clearances in participants with T2D without overt kidney disease. Filtration fraction (FF) (GFR/ERPF) was calculated. Relationships between insulin sensitivity and renal hemodynamic parameters were examined by multivariable linear regression. Renal hemodynamic parameters were examined across tertiles of M values. RESULTS: We tested 44 adults with T2D, of whom 77% were male, with mean ± SD age 63 ± 7 years, BMI 31.2 ± 4.0 kg/m2, and HbA1c 7.4 ± 0.6%. Average GFR was 110 ± 26 mL/min, with an FF of 22.1 ± 2.8% and median 24-h urinary albumin excretion of 11.3 mg (interquartile range 5.8-17.0). Average M value was 5.6 ± 2.9 mg/kglean/min. Insulin sensitivity inversely correlated with GFR (r = -0.44, P < 0.01) and FF (r = -0.40, P < 0.01), and these associations remained significant after multivariable adjustments for age, sex, renin-angiotensin system inhibitor use, and HbA1c. In addition, GFR, FF, and urinary albumin excretion were highest in the participants in the lowest M value tertile. CONCLUSIONS: For the first time, we demonstrate that impaired insulin sensitivity is associated with intrarenal hemodynamic dysfunction by gold standard techniques in adults with T2D treated with metformin monotherapy
    corecore