553 research outputs found

    Glutathione S-transferase activity and isoenzyme composition in benign ovarian tumours, untreated malignant ovarian tumours, and malignant ovarian tumours after platinum/cyclophosphamide chemotherapy.

    Get PDF
    Glutathione S-transferase (GST) isoenzyme composition, isoenzyme quantities and enzymatic activity were investigated in benign (n = 4) ovarian tumours and malignant ovarian tumours, before (n = 20) and after (n = 16) chemotherapy. Enzymatic activity of GST in cytosols was measured by determining 1-chloro-2,4-dinitrobenzene conjugation with glutathione, cytosolic GST subunits were determined by wide pore reversed phase HPLC, using a S-hexylglutathione-agarose affinity column, and isoelectric focussing. Both GST activity and GST pi amount were not related to histopathologic type, differentiation grade, or tumour volume index in untreated malignant tumours. GST isoenzyme patterns were identical in benign tumours and malignant tumours before and after platinum/cyclophosphamide chemotherapy, while GST pi was the predominant transferase. Mean GST activity and GST pi amount were decreased (P < 0.05) in malignant ovarian tumours after platinum/cyclophosphamide chemotherapy compared to untreated ovarian malignant tumours. No relation was found in untreated ovarian tumours between GST pi amount and response to platinum/cyclophosphamide chemotherapy. Thus, within the limitations of the current study no arguments were found for a role of GST in in vivo drug resistance of malignant ovarian tumours to platinum/cyclophosphamide chemotherapy

    Time- and dose-dependent effects of curcumin on gene expression in human colon cancer cells

    Get PDF
    BACKGROUND: Curcumin is a spice and a coloring food compound with a promising role in colon cancer prevention. Curcumin protects against development of colon tumors in rats treated with a colon carcinogen, in colon cancer cells curcumin can inhibit cell proliferation and induce apoptosis, it is an anti-oxidant and it can act as an anti-inflammatory agent. The aim of this study was to elucidate mechanisms and effect of curcumin in colon cancer cells using gene expression profiling. METHODS: Gene expression changes in response to curcumin exposure were studied in two human colon cancer cell lines, using cDNA microarrays with four thousand human genes. HT29 cells were exposed to two different concentrations of curcumin and gene expression changes were followed in time (3, 6, 12, 24 and 48 hours). Gene expression changes after short-term exposure (3 or 6 hours) to curcumin were also studied in a second cell type, Caco-2 cells. RESULTS: Gene expression changes (>1.5-fold) were found at all time points. HT29 cells were more sensitive to curcumin than Caco-2 cells. Early response genes were involved in cell cycle, signal transduction, DNA repair, gene transcription, cell adhesion and xenobiotic metabolism. In HT29 cells curcumin modulated a number of cell cycle genes of which several have a role in transition through the G2/M phase. This corresponded to a cell cycle arrest in the G2/M phase as was observed by flow cytometry. Functional groups with a similar expression profile included genes involved in phase-II metabolism that were induced by curcumin after 12 and 24 hours. Expression of some cytochrome P450 genes was downregulated by curcumin in HT29 and Caco-2 cells. In addition, curcumin affected expression of metallothionein genes, tubulin genes, p53 and other genes involved in colon carcinogenesis. CONCLUSIONS: This study has extended knowledge on pathways or processes already reported to be affected by curcumin (cell cycle arrest, phase-II genes). Moreover, potential new leads to genes and pathways that could play a role in colon cancer prevention by curcumin were identified

    Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays

    Get PDF
    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD10 values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD10 were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicit

    In vivo validation of DNA adduct formation by estragole in rats predicted by physiologically based biodynamic modelling

    Get PDF
    Estragole is a naturally occurring food-borne genotoxic compound found in a variety of food sources, including spices and herbs. This results in human exposure to estragole via the regular diet. The objective of this study was to quantify the dose-dependent estragole-DNA adduct formation in rat liver and the urinary excretion of 1'-hydroxyestragole glucuronide in order to validate our recently developed physiologically based biodynamic (PBBD) model. Groups of male outbred Sprague Dawley rats (n = 10, per group) were administered estragole once by oral gavage at dose levels of 0 (vehicle control), 5, 30, 75, 150, and 300mg estragole/kg bw and sacrificed after 48h. Liver, kidney and lungs were analysed for DNA adducts by LC-MS/MS. Results obtained revealed a dose-dependent increase in DNA adduct formation in the liver. In lungs and kidneys DNA adducts were detected at lower levels than in the liver confirming the occurrence of DNA adducts preferably in the target organ, the liver. The results obtained showed that the PBBD model predictions for both urinary excretion of 1'-hydroxyestragole glucuronide and the guanosine adduct formation in the liver were comparable within less than an order of magnitude to the values actually observed in vivo. The PBBD model was refined using liver zonation to investigate whether its predictive potential could be further improved. The results obtained provide the first data set available on estragole-DNA adduct formation in rats and confirm their occurrence in metabolically active tissues, i.e. liver, lung and kidney, while the significantly higher levels found in liver are in accordance with the liver as the target organ for carcinogenicity. This opens the way towards future modelling of dose-dependent estragole liver DNA adduct formation in huma

    Evaluation of Human Interindividual Variation in Bioactivation of Estragole Using Physiologically Based Biokinetic Modeling

    Get PDF
    The present study investigates interindividual variation in liver levels of the proximate carcinogenic metabolite of estragole, 1′-hydroxyestragole, due to variation in two key metabolic reactions involved in the formation and detoxification of this metabolite, namely 1′-hydroxylation of estragole and oxidation of 1′-hydroxyestragole. Formation of 1′-hydroxyestragole is predominantly catalyzed by P450 1A2, 2A6, and 2E1, and results of the present study support that oxidation of 1′-hydroxyestragole is catalyzed by 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2). In a first approach, the study defines physiologically based biokinetic (PBBK) models for 14 individual human subjects, revealing a 1.8-fold interindividual variation in the area under the liver concentration-time curve (AUC) for 1′-hydroxyestragole within this group of human subjects. Variation in oxidation of 1′-hydroxyestragole by 17β-HSD2 was shown to result in larger effects than those caused by variation in P450 enzyme activity. In a second approach, a Monte Carlo simulation was performed to evaluate the extent of variation in liver levels of 1′-hydroxyestragole that could occur in the population as a whole. This analysis could be used to derive a chemical-specific adjustment factor (CSAF), which is defined as the 99th percentile divided by the 50th percentile of the predicted distribution of the AUC of 1′-hydroxyestragole in the liver. The CSAF was estimated to range between 1.6 and 4.0, depending on the level of variation that was taken into account for oxidation of 1′-hydroxyestragole. Comparison of the CSAF to the default uncertainty factor of 3.16 for human variability in biokinetics reveals that the default uncertainty factor adequately protects 99% of the populatio

    Use of Physiologically Based Biokinetic (PBBK) Modeling to Study Estragole Bioactivation and Detoxification in Humans as Compared with Male Rats

    Get PDF
    The extent of bioactivation of the herbal constituent estragole to its ultimate carcinogenic metabolite 1′-sulfooxyestragole depends on the relative levels of bioactivation and detoxification pathways. The present study investigated the kinetics of the metabolic reactions of both estragole and its proximate carcinogenic metabolite 1′-hydroxyestragole in humans in incubations with relevant tissue fractions. Based on the kinetic data obtained a physiologically based biokinetic (PBBK) model for estragole in human was defined to predict the relative extent of bioactivation and detoxification at different dose levels of estragole. The outcomes of the model were subsequently compared with those previously predicted by a PBBK model for estragole in male rat to evaluate the occurrence of species differences in metabolic activation. The results obtained reveal that formation of 1′-oxoestragole, which represents a minor metabolic route for 1′-hydroxyestragole in rat, is the main detoxification pathway of 1′-hydroxyestragole in humans. Due to a high level of this 1′-hydroxyestragole oxidation pathway in human liver, the predicted species differences in formation of 1′-sulfooxyestragole remain relatively low, with the predicted formation of 1′-sulfooxyestragole being twofold higher in human compared with male rat, even though the formation of its precursor 1′-hydroxyestragole was predicted to be fourfold higher in human. Overall, it is concluded that in spite of significant differences in the relative extent of different metabolic pathways between human and male rat there is a minor influence of species differences on the ultimate overall bioactivation of estragole to 1′-sulfooxyestragol

    Matrix Modulation of the Bioactivation of Estragole by Constituents of Different Alkenylbenzene-containing Herbs and Spices and Physiologically Based Biokinetic Modeling of Possible In Vivo Effects

    Get PDF
    The alkenylbenzene estragole is a constituent of several herbs and spices. It induces hepatomas in rodents at high doses following bioactivation by cytochrome P450s and sulfotransferases (SULTs) giving rise to the ultimate carcinogenic metabolite 1'-sulfooxyestragole which forms DNA adducts. Methanolic extracts from different alkenylbenzene-containing herbs and spices were able to inhibit SULT activity. Flavonoids including quercetin, kaempferol, myricetin, apigenin, and nevadensin were the major constituents responsible for this inhibition with Ki values in the nano to micromolar range. In human HepG2 cells exposed to the proximate carcinogen 1ʹ-hydroxyestragole, the various flavonoids were able to inhibit estragole DNA adduct formation and shift metabolism in favor of glucuronidation which is a detoxification pathway for 1ʹ-hydroxyestragole. In a next step, the kinetics for SULT inhibition were incorporated in physiologically based biokinetic (PBBK) models for estragole in rat and human to predict the effect of co-exposure to estragole and (mixtures of) the different flavonoids on the bioactivation in vivo. The PBBK-model-based predictions indicate that the reduction of estragole bioactivation in rat and human by co-administration of the flavonoids is dependent on whether the intracellular liver concentrations of the flavonoids can reach their Ki values. It is expected that this is most easily achieved for nevadensin which has a Ki value in the nanomolar range and is, due to its methyl ation, more metabolically stable than the other flavonoid

    Integrated assessment by multiple gene expression analysis of quercetin bioactivity on anticancer-related mechanisms in colon cancer cells in vitro

    Get PDF
    Background Many different mechanisms are involved in nutrient¿related prevention of colon cancer. In this study, a comprehensive assessment of the spectrum of possible biological actions of the bioactive compound quercetin is made using multiple gene expression analysis. Quercetin is a flavonoid that can inhibit proliferation of tumor cells and reduce the number of aberrant crypt foci, although increase of number of colon tumors was also reported. Aim of the study In order to elucidate possible mechanisms involved in its mode of action the effect of quercetin on expression of 4000 human genes in Caco¿2 cells was studied and related to functional effects. Methods Caco¿2 cells were exposed to 5 or 50 µM quercetin for 48 hours, differential expression of 4000 human genes was studied using microarrays and related to functional effects. Differentially expressed genes were categorized in seven functional groups: cell cycle and differentiation, apoptosis, tumor suppressor genes and oncogenes, cell adhesion and cell¿cell interaction, transcription, signal transduction and energy metabolism. Also, cell proliferation and cell cycle distribution were measured. Results Quercetin (5µM) downregulated expression of cell cycle genes (for example CDC6, CDK4 and cyclin D1), downregulated cell proliferation and induced cell cycle arrest in Caco¿2 cells. After exposure to 50 µM quercetin cell proliferation decreased to 51.3% of control, and further decrease of the percentage of cells in the G1 phase coincided with an increase of the percentage of cells in the sub¿G1 phase. Quercetin upregulated expression of several tumor suppressor genes. In addition, genes involved in signal transduction pathways like beta catenin/TCF signalling and MAPK signal transduction were influenced by quercetin. Conclusions This study shows that large¿scale gene expression analysis in combination with functional assays yields a considerable amount of information on (anti¿)carcinogenic potential of food components like querceti
    • …
    corecore