491 research outputs found

    Quantum engineering with ultracold atoms

    Get PDF

    Bose-Einstein condensates with long-range dipolar interactions

    Get PDF
    Bose-Einstein condensation is a phase transition which atoms undergo when cooled near absolute zero temperature Since the theoretical prediction in 1924, and the spectacular experimental confirmation of Bose-Einstein condensation in 1995, a rich new field in physics has emerged studying ultracold degenerate quantum gases. Although these ultracold gases are very dilute, their properties are nevertheless strongly influenced by interatomic interactions. Usually, these interactions are dominated by short range, isotropic contact interactions. In contrast, the recently realised Bose-Einstein Condensate (BEC) of Chromium atoms contains long-range, anisotropic dipolar interactions leading to interesting new physics. In this graduation project, stationary states of such dipolar BECs in harmonic traps are investigated for various experimentally relevant parameters. Furthermore, the elementary excitations of the BEC are calculated, as well as its response to a rotating perturbation. Finally, some more advanced topics such as vortex interactions and condensate response to impurities are investigated. Bose-Einstein condensation is a phase transition which atoms undergo when cooled near absolute zero temperature Since the theoretical prediction in 1924, and the spectacular experimental confirmation of Bose-Einstein condensation in 1995, a rich new field in physics has emerged studying ultracold degenerate quantum gases. Although these ultracold gases are very dilute, their properties are nevertheless strongly influenced by interatomic interactions. Usually, these interactions are dominated by short range, isotropic contact interactions. In contrast, the recently realised Bose-Einstein Condensate (BEC) of Chromium atoms contains long-range, anisotropic dipolar interactions leading to interesting new physics. In this graduation project, stationary states of such dipolar BECs in harmonic traps are investigated for various experimentally relevant parameters. Furthermore, the elementary excitations of the BEC are calculated, as well as its response to a rotating perturbation. Finally, some more advanced topics such as vortex interactions and condensate response to impurities are investigated

    Rydberg crystals, and how to make them in theory

    Get PDF
    Abstract only. Change of title

    Wireless network control of interacting Rydberg atoms

    Get PDF
    We identify a relation between the dynamics of ultracold Rydberg gases in which atoms experience a strong dipole blockade and spontaneous emission, and a stochastic process that models certain wireless random-access networks. We then transfer insights and techniques initially developed for these wireless networks to the realm of Rydberg gases, and explain how the Rydberg gas can be driven into crystal formations using our understanding of wireless networks. Finally, we propose a method to determine Rabi frequencies (laser intensities) such that particles in the Rydberg gas are excited with specified target excitation probabilities, providing control over mixed-state populations.Comment: 6 pages, 7 figures; includes corrections and improvements from the peer-review proces

    Optimal control of Rydberg lattice gases

    Full text link
    We present optimal control protocols to prepare different many-body quantum states of Rydberg atoms in optical lattices. Specifically, we show how to prepare highly ordered many-body ground states, GHZ states as well as some superposition of symmetric excitation number Fock states, that inherit the translational symmetry from the Hamiltonian, within sufficiently short excitation times minimizing detrimental decoherence effects. For the GHZ states, we propose a two-step detection protocol to experimentally verify the optimal preparation of the target state based only on standard measurement techniques. Realistic experimental constraints and imperfections are taken into account by our optimization procedure making it applicable to ongoing experiments.Comment: Accepted versio

    Instabilities leading to vortex lattice formation in rotating Bose-Einstein condensates

    Get PDF
    We present a comprehensive theoretical study of vortex lattice formation in atomic Bose-Einstein condensates confined by a rotating elliptical trap. We consider rotating solutions of the classical hydrodynamic equations, their response to perturbations, as well as time-dependent simulations. We discriminate three distinct, experimentally testable, regimes of instability: {\em ripple}, {\em interbranch}, and {\em catastrophic}. Under symmetry-breaking perturbations these instabilities lead to lattice formation even at zero temperature. While our results are consistent with previous theoretical and experimental results, they shed new light on lattice formation.Comment: 5 pages, 2 figure
    • …
    corecore