11 research outputs found

    Creating information delivery specifications using linked data

    Get PDF
    The use of Building Information Management (BIM) has become mainstream in many countries. Exchanging data in open standards like the Industry Foundation Classes (IFC) is seen as the only workable solution for collaboration. To define information needs for collaboration, many organizations are now documenting what kind of data they need for their purposes. Currently practitioners define their requirements often a) in a format that cannot be read by a computer; b) by creating their own definitions that are not shared. This paper proposes a bottom up solution for the definition of new building concepts a property. The authors have created a prototype implementation and will elaborate on the capturing of information specifications in the future

    Semantic query languages for knowledge-based web services in a construction context

    Get PDF
    Since the early 2000s, different frameworks were set up to enable web-based collaboration in building projects. Unfortunately, none of these initiatives was granted a long life. Recently, however, the use of web technologies in the building industry has been gaining momentum again, considered some promising technologies for reaching a more interoperable BIM practice. Specifically, this relates to (1) Linked Data and Semantic Web technologies, and (2) cloud-based applications. In order to combine these into a network of interlinked applications and datastores, an agreed-upon mechanism for automatic communication and data retrieval needs to be used. Apart from the W3C standard SPARQL, often considered too high a threshold for developers to implement, there are some recent GraphQL-based solutions that simplify the querying process and its implementation into web services. In this paper, we review two recent open source technologies based on GraphQL, that enable to query Linked Data on the web: GraphQL-LD and HyperGraphQL

    Towards a decentralised common data environment using linked building data and the solid ecosystem

    Get PDF
    With the emergence of Building Information Modelling (BIM), the construction industry is rapidly catching up with the digital revolution that has boosted productivity in virtually all economic sectors. In current practice, the focus of BIM lies on exchange of documents, often through proprietary formats exchanged using the Industry Foundation Classes (IFC). However, with web technologies such as RDF, OWL and SPARQL, a data- and web-based BIM paradigm becomes within reach. The decentralisation of data and decoupling of information and applications will enhance a more general adoption of Big Open BIM, and is expected to lower the BIM threshold for smaller companies that are active in different phases of the building life cycle. Since one of the promises of the Semantic Web and Linked Data is a highly improved interoperability between different disciplines, it is not necessary to reinvent the wheel for the setup of an infrastructure that supports such a network of decentralised tools and data. In this paper, we evaluate the specifications provided by the Solid project (Inrupt Inc.), a Linked Data-based ecosystem for Social Linked Data. Although the exemplary use case of the Solid ecosystem is decentralisation of data and applications for social network purposes, we notice a considerable overlap with recent ambitions and challenges for a web-based AECO industry (Architecture, Engineering, Construction and Operation). This includes standardised data representations, role- or actor-based authorisation and authentication and the need for modular and extensible applications, dedicated to a specific use case. After a brief introduction to Linked Data and its applications in the building industry, we discuss present solutions for building data management (Common Data Environments, multimodels, etc.). In order to translate these approaches towards a Linked Data context with minimal effort and maximal effect, we then review the Solid specifications for use in a construction-oriented web ecosystem. As a proof of concept, we discuss the setup of a web-service for creation and management of Linked Building Data, generated with the Solid-React generator. This application is envisaged as a bridge between the multiple data stores of different project stakeholders and the end user. It acts as an interface to a distributed Common Data Environment that also allows the generation of multi-models

    jyrkioraskari/ifcOWL: ifcOWL DOI reference

    No full text
    ifcOWL standar

    Methodologies for requirement checking on building models:A technology overview

    No full text
    \u3cp\u3eThe use of Building Information Modelling (BIM) has increased in the Architectural and Urban domain. Stakeholders within distinct disciplines collaborate and exchange such information models digitally. In order to strive for an interoperable use of the models, requirement documents are being written by stakeholders, standardisation bodies and governments. Such documents pose additional requirements to the exchange of building model definitions and limit the scope of information to something that is relevant to the disciplines the exchange pertains to, the phase of the construction project and the level of development of the project. For effective collaboration processes, checking these requirements in an automated and unambiguous way is of crucial importance. Yet, requirement definitions often comprise natural language texts and academic and commercial tools being developed in this regard are fragmented and heterogeneous. Furthermore, the models being checked are of uncertain quality because the semantics of the schema are not rigorously formalized and enforced and models contain redundancies that affect their reliability. This paper urges for more developed schema semantics and illustrates how the body of technical means, such as classification system, concept libraries, query languages, reasoners and model view definitions are related to one another and to the concept of automated rule checking.\u3c/p\u3

    Towards a decentralised common data environment using linked building data and the solid ecosystem

    No full text
    With the emergence of Building Information Modelling (BIM), the construction industry is rapidly catching up with the digital revolution that has boosted productivity in virtually all economic sectors. In current practice, the focus of BIM lies on exchange of documents, often through proprietary formats exchanged using the Industry Foundation Classes (IFC). However, with web technologies such as RDF, OWL and SPARQL, a data- and web-based BIM paradigm becomes within reach. The decentralisation of data and decoupling of information and applications will enhance a more general adoption of Big Open BIM, and is expected to lower the BIM threshold for smaller companies that are active in different phases of the building life cycle. Since one of the promises of the Semantic Web and Linked Data is a highly improved interoperability between different disciplines, it is not necessary to reinvent the wheel for the setup of an infrastructure that supports such a network of decentralised tools and data. In this paper, we evaluate the specifications provided by the Solid project (Inrupt Inc.), a Linked Data-based ecosystem for Social Linked Data. Although the exemplary use case of the Solid ecosystem is decentralisation of data and applications for social network purposes, we notice a considerable overlap with recent ambitions and challenges for a web-based AECO industry (Architecture, Engineering, Construction and Operation). This includes standardised data representations, role- or actor-based authorisation and authentication and the need for modular and extensible applications, dedicated to a specific use case. After a brief introduction to Linked Data and its applications in the building industry, we discuss present solutions for building data management (Common Data Environments, multimodels, etc.). In order to translate these approaches towards a Linked Data context with minimal effort and maximal effect, we then review the Solid specifications for use in a construction-oriented web ecosystem. As a proof of concept, we discuss the setup of a web-service for creation and management of Linked Building Data, generated with the Solid-React generator. This application is envisaged as a bridge between the multiple data stores of different project stakeholders and the end user. It acts as an interface to a distributed Common Data Environment that also allows the generation of multi-models

    Creating information delivery specifications using linked data

    No full text
    The use of Building Information Management (BIM) has become mainstream in many countries. Exchanging data in open standards like the Industry Foundation Classes (IFC) is seen as the only workable solution for collaboration. To define information needs for collaboration, many organizations are now documenting what kind of data they need for their purposes. Currently practitioners define their requirements often a) in a format that cannot be read by a computer; b) by creating their own definitions that are not shared. This paper proposes a bottom up solution for the definition of new building concepts a property. The authors have created a prototype implementation and will elaborate on the capturing of information specifications in the future
    corecore