28 research outputs found

    Platelet- derived growth factor receptor-beta and epidermal growth factor receptor in pulmonary vasculature of systemic sclerosis-associated pulmonary arterial hypertension versus idiopathic pulmonary arterial hypertension and pulmonary veno-occlusive disease: a case-control study

    Get PDF
    INTRODUCTION: Systemic sclerosis (SSc) complicated by pulmonary arterial hypertension (PAH) carries a poor prognosis, despite pulmonary vascular dilating therapy. Platelet-derived growth factor receptor-beta (PDGFR-beta) and epidermal growth factor receptor (EGFR) are potential therapeutic targets for PAH because of their proliferative effects on vessel remodelling. To explore their role in SScPAH, we compared PDGFR- and EGFR-mmunoreactivity in lung tissue specimens from SScPAH. We compared staining patterns with idiopathic PAH (IPAH) and pulmonary veno-occlusive disease (PVOD), as SScPAH vasculopathy differs from IPAH and sometimes displays features of PVOD. Immunoreactivity patterns of phosphorylated PDGFR-beta (pPDGFR-beta) and the ligand PDGF-B were evaluated to provide more insight into the patterns of PDGFR-b activation. METHODS: Lung tissue specimens from five SScPAH, nine IPAH, six PVOD patients and five controls were examined. Immunoreactivity was scored for presence, distribution and intensity. RESULTS: All SScPAH and three of nine IPAH cases (P = 0.03) showed PDGFR-beta-immunoreactivity in small vessels (arterioles/venules); of five SScPAH vs. two of nine IPAH cases (P = 0.02) showed venous immunoreactivity. In small vessels, intensity was stronger in SScPAH vs. IPAH. No differences were found between SScPAH and PVOD. One of five normal controls demonstrated focally mild immunoreactivity. There were no differences in PDGF-ligand and pPDGFR-b-immunoreactivity between patient groups; however, pPDGFR-b-immunoreactivity tended to be more prevalent in SScPAH small vasculature compared to IPAH. Vascular EGFR-immunoreactivity was limited to arterial and arteriolar walls, without differences between groups. No immunoreactivity was observed in vasculature of normals. CONCLUSIONS: PDGFR-beta-immunoreactivity in SScPAH is more common and intense in small- and post-capillary vessels than in IPAH and does not differ from PVOD, fitting in with histomorphological distribution of vasculopathy. PDGFR-beta immunoreactivity pattern is not paralleled by pPDGFR-beta or PDGF-B patterns. PDGFR-beta- and EGFR-immunoreactivity of pulmonary vessels distinguishes PAH patients from controls

    Stenting and interventional radiology for obstructive jaundice in patients with unresectable biliary tract carcinomas

    Get PDF
    Together with biliary drainage, which is an appropriate procedure for unresectable biliary cancer, biliary stent placement is used to improve symptoms associated with jaundice. Owing to investigations comparing percutaneous transhepatic biliary drainage (PTBD), surgical drainage, and endoscopic drainage, many types of stents are now available that can be placed endoscopically. The stents used are classified roughly as plastic stents and metal stents. Compared with plastic stents, metal stents are of large diameter, and have long-term patency (although they are expensive). For this reason, the use of metal stents is preferred for patients who are expected to survive for more than 6 months, whereas for patients who are likely to survive for less than 6 months, the use of plastic stents is not considered to be improper. Obstruction in a metal stent is caused by a tumor that grows within the stent through the mesh interstices. To overcome such problems, a covered metal stent was developed, and these stents are now used in patients with malignant distal biliary obstruction. However, this type of stent has been reported to have several shortcomings, such as being associated with the development of acute cholecystitis and stent migration. In spite of these shortcomings, evidence is expected to demonstrate its superiority over other types of stent

    Purification and properties of hydroquinone hydroxylase, a flavin adenine dinucleotide-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604

    No full text
    The ascomycetous yeast Candida parapsilosis CBS604 catabolizes 4-hydroxybenzoate through the initial formation of hydroquinone (1,4-dihydroxybenzene). High levels of hydroquinone hydroxylase activity are induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, 1,3-dihydroxybenzene or 1,4-dihydroxybenzene as the sole carbon source. The monooxygenase constitutes up to 5␘f the total amount of protein and is purified to apparent homogeneity in three chromatographic steps. Hydroquinone hydroxylase from C. parapsilosis is a homodimer of about 150 kDa with each 76-kDa subunit containing a tightly noncovalently bound FAD. The flavin prosthetic group is quantitatively resolved from the protein at neutral pH in the presence of chaotropic salts. The apoenzyme is dimeric and readily reconstituted with FAD. Hydroquinone hydroxylase from C. parapsilosis catalyzes the ortho-hydroxylation of a wide range of monocyclic phenols with the stoichiometric consumption of NADPH and oxygen. With most aromatic substrates, no uncoupling of hydroxylation occurs. Hydroxylation of monofluorinated phenols is highly regiospecific with a preference for C6 hydroxylation. Binding of phenol highly stimulates the rate of flavin reduction by NADPH. At pH 7.6, 25 °C, this step does not limit the rate of overall catalysis. During purification, hydroquinone hydroxylase is susceptible towards limited proteolysis. Proteolytic cleavage does not influence the enzyme dimeric nature but results in relatively stable protein fragments of 55, 43, 35 and 22 kDa. N-Terminal peptide sequence analysis revealed the presence of two nick sites and showed that hydroquinone hydroxylase from C. parapsilosis is structurally related to phenol hydroxylase from Trichosporon cutaneum. The implications of these findings for the catalytic mechanism of hydroquinone hydroxylase are discussed

    Examination arrangements

    No full text

    Purification and properties of hydroquinone hydroxylase, a flavin adenine dinucleotide-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604

    No full text
    The ascomycetous yeast Candida parapsilosis CBS604 catabolizes 4-hydroxybenzoate through the initial formation of hydroquinone (1,4-dihydroxybenzene). High levels of hydroquinone hydroxylase activity are induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, 1,3-dihydroxybenzene or 1,4-dihydroxybenzene as the sole carbon source. The monooxygenase constitutes up to 5␘f the total amount of protein and is purified to apparent homogeneity in three chromatographic steps. Hydroquinone hydroxylase from C. parapsilosis is a homodimer of about 150 kDa with each 76-kDa subunit containing a tightly noncovalently bound FAD. The flavin prosthetic group is quantitatively resolved from the protein at neutral pH in the presence of chaotropic salts. The apoenzyme is dimeric and readily reconstituted with FAD. Hydroquinone hydroxylase from C. parapsilosis catalyzes the ortho-hydroxylation of a wide range of monocyclic phenols with the stoichiometric consumption of NADPH and oxygen. With most aromatic substrates, no uncoupling of hydroxylation occurs. Hydroxylation of monofluorinated phenols is highly regiospecific with a preference for C6 hydroxylation. Binding of phenol highly stimulates the rate of flavin reduction by NADPH. At pH 7.6, 25 °C, this step does not limit the rate of overall catalysis. During purification, hydroquinone hydroxylase is susceptible towards limited proteolysis. Proteolytic cleavage does not influence the enzyme dimeric nature but results in relatively stable protein fragments of 55, 43, 35 and 22 kDa. N-Terminal peptide sequence analysis revealed the presence of two nick sites and showed that hydroquinone hydroxylase from C. parapsilosis is structurally related to phenol hydroxylase from Trichosporon cutaneum. The implications of these findings for the catalytic mechanism of hydroquinone hydroxylase are discussed

    NMR characterization of a 264-residue hyperthermostable endo-beta-1,3-glucanase.

    No full text
    Item does not contain fulltextInsight into the hyperthermostable endo-beta-1,3-glucanase pfLamA from Pyrococcus furiosus is obtained by using NMR spectroscopy. pfLamA functions optimally at 104 degrees C and recently the X-ray structure of pfLamA has been obtained at 20 degrees C, a temperature at which the enzyme is inactive. In this study, near-complete (>99%) NMR assignments are presented of chemical shifts of pfLamA in presence and absence of calcium at 62 degrees C, a temperature at which the enzyme is biologically active. The protein contains calcium and the effects of calcium on the protein are assessed. Calcium binding results in relatively small chemical shift changes in a region distant from the active site of pfLamA and thus causes only minor conformational modifications. Removal of calcium does not significantly alter the denaturation temperature of pfLamA, implying that calcium does not stabilize the enzyme against global unfolding. The data obtained form the basis for elucidation of the molecular origins involved in conformational stability and biological activity of hyperthermophilic endo-beta-1,3-glucanases at extreme temperatures
    corecore