358 research outputs found

    Fixed-Node Monte Carlo Calculations for the 1d Kondo Lattice Model

    Get PDF
    The effectiveness of the recently developed Fixed-Node Quantum Monte Carlo method for lattice fermions, developed by van Leeuwen and co-workers, is tested by applying it to the 1D Kondo lattice, an example of a one-dimensional model with a sign problem. The principles of this method and its implementation for the Kondo Lattice Model are discussed in detail. We compare the fixed-node upper bound for the ground state energy at half filling with exact-diagonalization results from the literature, and determine several spin correlation functions. Our `best estimates' for the ground state correlation functions do not depend sensitively on the input trial wave function of the fixed-node projection, and are reasonably close to the exact values. We also calculate the spin gap of the model with the Fixed-Node Monte Carlo method. For this it is necessary to use a many-Slater-determinant trial state. The lowest-energy spin excitation is a running spin soliton with wave number pi, in agreement with earlier calculations.Comment: 19 pages, revtex, contribution to Festschrift for Hans van Leeuwe

    Proof for an upper bound in fixed-node Monte Carlo for lattice fermions

    Get PDF
    We justify a recently proposed prescription for performing Green Function Monte Carlo calculations on systems of lattice fermions, by which one is able to avoid the sign problem. We generalize the prescription such that it can also be used for problems with hopping terms of different signs. We prove that the effective Hamiltonian, used in this method, leads to an upper bound for the ground-state energy of the real Hamiltonian, and we illustrate the effectiveness of the method on small systems.Comment: 14 pages in revtex v3.0, no figure

    Spitzer Observations of 3C Quasars and Radio Galaxies: Mid-Infrared Properties of Powerful Radio Sources

    Get PDF
    We have measured mid-infrared radiation from an orientation-unbiased sample of 3CRR galaxies and quasars at redshifts 0.4 < z < 1.2 with the IRS and MIPS instruments on the Spitzer Space Telescope. Powerful emission (L_24micron > 10^22.4 W/Hz/sr) was detected from all but one of the sources. We fit the Spitzer data as well as other measurements from the literature with synchrotron and dust components. The IRS data provide powerful constraints on the fits. At 15 microns, quasars are typically four times brighter than radio galaxies with the same isotropic radio power. Based on our fits, half of this difference can be attributed to the presence of non-thermal emission in the quasars but not the radio galaxies. The other half is consistent with dust absorption in the radio galaxies but not the quasars. Fitted optical depths are anti-correlated with core dominance, from which we infer an equatorial distribution of dust around the central engine. The median optical depth at 9.7 microns for objects with core-dominance factor R > 10^-2 is approximately 0.4; for objects with R < 10^-2, it is 1.1. We have thus addressed a long-standing question in the unification of FR II quasars and galaxies: quasars are more luminous in the mid-infrared than galaxies because of a combination of Doppler-boosted synchrotron emission in quasars and extinction in galaxies, both orientation-dependent effects.Comment: 42 pages, 14 figures plus two landscape tables. Accepted for publication in Ap

    Polarization and kinematics in Cygnus A

    Full text link
    From optical spectropolarimetry of Cygnus A we conclude that the scattering medium in the ionization cones in Cygnus A is moving outward at a speed of 170+-34 km/s, and that the required momentum can be supplied by the radiation pressure of an average quasar. Such a process could produce a structure resembling the observed ionization cones, which are thought to result from shadowing by a circumnuclear dust torus. We detect a polarized red wing in the [O III] emission lines arising from the central kiloparsec of Cygnus A. This wing is consistent with line emission created close to the boundary of the broad-line region.Comment: 5 pages, accepted for publication in MNRAS letter

    Ionospheric Calibration of Low Frequency Radio Interferometric Observations using the Peeling Scheme: I. Method Description and First Results

    Full text link
    Calibration of radio interferometric observations becomes increasingly difficult towards lower frequencies. Below ~300 MHz, spatially variant refractions and propagation delays of radio waves traveling through the ionosphere cause phase rotations that can vary significantly with time, viewing direction and antenna location. In this article we present a description and first results of SPAM (Source Peeling and Atmospheric Modeling), a new calibration method that attempts to iteratively solve and correct for ionospheric phase errors. To model the ionosphere, we construct a time-variant, 2-dimensional phase screen at fixed height above the Earth's surface. Spatial variations are described by a truncated set of discrete Karhunen-Loeve base functions, optimized for an assumed power-law spectral density of free electrons density fluctuations, and a given configuration of calibrator sources and antenna locations. The model is constrained using antenna-based gain phases from individual self-calibrations on the available bright sources in the field-of-view. Application of SPAM on three test cases, a simulated visibility data set and two selected 74 MHz VLA data sets, yields significant improvements in image background noise (5-75 percent reduction) and source peak fluxes (up to 25 percent increase) as compared to the existing self-calibration and field-based calibration methods, which indicates a significant improvement in ionospheric phase calibration accuracy.Comment: 23 pages, 14 figures, 2 tables. Accepted for publication in A&A. Changes in v2: Corrected minor error in Equations A.3 and A.12. Extended acknowledgment

    Quantizing Charged Magnetic Domain Walls: Strings on a Lattice

    Get PDF
    The discovery by Tranquada et al. of an ordered phase of charged domain walls in the high-Tc cuprates leads us to consider the possible existence of a quantum domain-wall liquid. We propose minimal models for the quantization, by meandering fluctuations, of isolated charged domain walls. These correspond to lattice string models. The simplest model of this kind, a directed lattice string, can be mapped onto a quantum spin chain or on a classical two-dimensional solid-on-solid surface model. The model exhibits a rich phase diagram, containing several rough phases with low-lying excitations as well as ordered phases which are gapped.Comment: 4 two-column pages, including the 3 Postscript figure

    Superconductivity of a Metallic Stripe Embedded in an Antiferromagnet

    Full text link
    We study a simple model for the metallic stripes found in La1.6xNd0.4SrxCuO4La_{1.6-x}Nd_{0.4}Sr_xCuO_4: two chain Hubbard ladder embedded in a static antiferromagnetic environments. We consider two cases: a ``topological stripe'', for which the phase of the Neel order parameter shifts by π\pi across the ladder, and a ``non-topological stripe'', for which there is no phase shift across the ladder. We perform one-loop renormalization group calculations to determine the low energy properties. We compare the results with those of the isolated ladder and show that for small doping superconductivity is enhanced in the topological stripe, and suppressed in the non-topological one. In the topological stripe, the superconducting order parameter is a mixture of a spin singlet component with zero momentum and a spin triplet component with momentum π\pi. We argue that this mixture is generic, and is due to the presence of a new term in the quantum Ginzburg-Landau action. Some consequences of this mixing are discussed.Comment: 6 pages, 3 eps figure

    High-frequency dynamics of wave localisation

    Full text link
    We study the effect of localisation on the propagation of a pulse through a multi-mode disordered waveguide. The correlator of the transmitted wave amplitude u at two frequencies differing by delta_omega has for large delta_omega the stretched exponential tail ~exp(-sqrt{tau_D delta_omega/2}). The time constant tau_D=L^2/D is given by the diffusion coefficient D, even if the length L of the waveguide is much greater than the localisation length xi. Localisation has the effect of multiplying the correlator by a frequency-independent factor exp(-L/2xi), which disappears upon breaking time-reversal symmetry.Comment: 3 pages, 1 figur

    Dynamic effect of phase conjugation on wave localization

    Get PDF
    We investigate what would happen to the time dependence of a pulse reflected by a disordered single-mode waveguide, if it is closed at one end not by an ordinary mirror but by a phase-conjugating mirror. We find that the waveguide acts like a virtual cavity with resonance frequency equal to the working frequency omega_0 of the phase-conjugating mirror. The decay in time of the average power spectrum of the reflected pulse is delayed for frequencies near omega_0. In the presence of localization the resonance width is tau_s^{-1}exp(-L/l), with L the length of the waveguide, l the mean free path, and tau_s the scattering time. Inside this frequency range the decay of the average power spectrum is delayed up to times t simeq tau_s exp(L/l).Comment: 10 pages including 2 figure
    corecore