23 research outputs found

    Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone

    Get PDF
    BackgroundChondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce.MethodsWe developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential.ResultsWe show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type.ConclusionsBased on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies

    Possible modification of BRSK1 on the risk of alkylating chemotherapy-related reduced ovarian function

    Get PDF
    STUDY QUESTION: Do genetic variations in the DNA damage response pathway modify the adverse effect of alkylating agents on ovarian function in female childhood cancer survivors (CCS)? SUMMARY ANSWER: Female CCS carrying a common BR serine/threonine kinase 1 (BRSK1) gene variant appear to be at 2.5-fold increased odds of reduced ovarian function after treatment with high doses of alkylating chemotherapy. WHAT IS KNOWN ALREADY: Female CCS show large inter-individual variability in the impact of DNA-damaging alkylating chemotherapy, given as treatment of childhood cancer, on adult ovarian function. Genetic variants in DNA repair genes affecting ovarian function might explain this variability. STUDY DESIGN, SIZE, DURATION: CCS for the discovery cohort were identified from the Dutch Childhood Oncology Group (DCOG) LATER VEVO-study, a multi-centre retrospective cohort study evaluating fertility, ovarian reserve and risk of premature menopause among adult female 5-year survivors of childhood cancer. Female 5-year CCS, diagnosed with cancer and treated with chemotherapy before the age of 25 years, and aged 18 years or older at time of study were enrolled in the current study. Results from the discovery Dutch DCOG-LATER VEVO cohort (n = 285) were validated in the pan-European PanCareLIFE (n =465) and the USA-based St. Jude Lifetime Cohort (n = 391). PARTICIPANTS/MATERIALS, SETTING, METHODS: To evaluate ovarian function, anti-Miillerian hormone (AMH) levels were assessed in both the discovery cohort and the replication cohorts. Using additive genetic models in linear and logistic regression, five genetic variants involved in DNA damage response were analysed in relation to cyclophosphamide equivalent dose (CED) score and their impact on ovarian function. Results were then examined using fixed-effect meta-analysis. MAIN RESULTS AND THE ROLE OF CHANCE: Meta-analysis across the three independent cohorts showed a significant interaction effect (P= 3.0 x 10(-4)) between rs11668344 of BRSK 1 (allele frequency = 0.34) among CCS treated with high-dose alkylating agents (CED score >= 8000 mg/m(2)), resulting in a 2.5-fold increased odds of a reduced ovarian function (lowest AMH tertile) for CCS carrying one G allele compared to CCS without this allele (odds ratio genotype AA: 2.01 vs AG: 5.00). LIMITATIONS, REASONS FOR CAUTION: While low AMH levels can also identify poor responders in assisted reproductive technology, it needs to be emphasized that AMH remains a surrogate marker of ovarian function. WIDER IMPLICATIONS OF THE FINDINGS: Further research, validating our findings and identifying additional risk contributing genetic variants, may enable individualized counselling regarding treatment-related risks and necessity of fertility preservation procedures in girls with cancer

    Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation

    Get PDF
    The initiating somatic genetic events in chordoma development have not yet been identified. Most cytogenetically investigated chordomas have displayed near-diploid or moderately hypodiploid karyotypes, with several numerical and structural rearrangements. However, no consistent structural chromosome aberration has been reported. This is the first array-based study characterising DNA copy number changes in chordoma. Array comparative genomic hybridisation (aCGH) identified copy number alterations in all samples and imbalances affecting 5 or more out of the 21 investigated tumours were seen on all chromosomes. In general, deletions were more common than gains and no high-level amplification was found, supporting previous findings of primarily losses of large chromosomal regions as an important mechanism in chordoma development. Although small imbalances were commonly found, the vast majority of these were detected in single cases; no small deletion affecting all tumours could be discerned. However, the CDKN2A and CDKN2B loci in 9p21 were homo- or heterozygously lost in 70% of the tumours, a finding corroborated by fluorescence in situ hybridisation, suggesting that inactivation of these genes constitute an important step in chordoma development

    Interindividual variation in ovarian reserve after gonadotoxic treatment in female childhood cancer survivors – a genome-wide association study:results from PanCareLIFE

    Get PDF
    Objective: To discover new variants associated with low ovarian reserve after gonadotoxic treatment among adult female childhood cancer survivors using a genome-wide association study approach. Design: Genome-wide association study. Setting: Not applicable. Patients: A discovery cohort of adult female childhood cancer survivors from the pan-European PanCareLIFE cohort (n = 743; median age: 25.8 years), excluding those who received bilateral ovarian irradiation, bilateral oophorectomy, central nervous system or total body irradiation, or stem cell transplantation. Replication was attempted in the US-based St. Jude Lifetime Cohort (n = 391; median age: 31.3 years). Exposure: Female childhood cancer survivors are at risk of therapy-related gonadal impairment. Alkylating agents are well-established risk factors, and the interindividual variability in gonadotoxicity may be explained by genetic polymorphisms. Data were collected in real-life conditions, and cyclophosphamide equivalent doses were used to quantify alkylation agent exposure. Main Outcome Measure: Anti-Müllerian hormone (AMH) levels served as a proxy for ovarian function, and the findings were combined in a meta-analysis. Results: Three genome-wide significant (&lt;5.0 × 10−8) and 16 genome-wide suggestive (&lt;5.0 × 10−6) loci were associated with log-transformed AMH levels, adjusted for cyclophosphamide equivalent dose of alkylating agents, age at diagnosis, and age at study in the PanCareLIFE cohort. On the basis of the effect allele frequency (EAF) (&gt;0.01 if not genome-wide significant), and biologic relevance, 15 single nucleotide polymorphisms were selected for replication. None of the single nucleotide polymorphisms were statistically significantly associated with AMH levels. A meta-analysis indicated that rs78861946 was associated with borderline genome-wide statistical significance (reference/effect allele: C/T; effect allele frequency: 0.04, beta (SE): −0.484 (0.091). Conclusion: This study found no genetic variants associated with a lower ovarian reserve after gonadotoxic treatment because the findings of this genome-wide association study were not statistically significant replicated in the replication cohort. Suggestive evidence for the potential importance of 1 variant is briefly discussed, but the lack of statistical significance calls for larger cohort sizes. Because the population of childhood cancer survivors is increasing, large-scale and systematic research is needed to identify genetic variants that could aid predictive risk models of gonadotoxicity as well as fertility preservation options for childhood cancer survivors.</p

    Interindividual variation in ovarian reserve after gonadotoxic treatment in female childhood cancer survivors - a genome-wide association study: results from PanCareLIFE

    Get PDF
    Objective: To discover new variants associated with low ovarian reserve after gonadotoxic treatment among adult female childhood cancer survivors using a genome-wide association study approach. Design: Genome-wide association study. Setting: Not applicable. Patients: A discovery cohort of adult female childhood cancer survivors from the pan-European PanCareLIFE cohort (n = 743; median age: 25.8 years), excluding those who received bilateral ovarian irradiation, bilateral oophorectomy, central nervous system or total body irradiation, or stem cell transplantation. Replication was attempted in the US-based St. Jude Lifetime Cohort (n = 391; median age: 31.3 years). Exposure: Female childhood cancer survivors are at risk of therapy-related gonadal impairment. Alkylating agents are well-established risk factors, and the interindividual variability in gonadotoxicity may be explained by genetic polymorphisms. Data were collected in real-life conditions, and cyclophosphamide equivalent doses were used to quantify alkylation agent exposure. Main Outcome Measure: Anti-Müllerian hormone (AMH) levels served as a proxy for ovarian function, and the findings were combined in a meta-analysis. Results: Three genome-wide significant (0.01 if not genome-wide significant), and biologic relevance, 15 single nucleotide polymorphisms were selected for replication. None of the single nucleotide polymorphisms were statistically significantly associated with AMH levels. A meta-analysis indicated that rs78861946 was associated with borderline genome-wide statistical significance (reference/effect allele: C/T; effect allele frequency: 0.04, beta (SE): −0.484 (0.091). Conclusion: This study found no genetic variants associated with a lower ovarian reserve after gonadotoxic treatment because the findings of this genome-wide association study were not statistically significant replicated in the replication cohort. Suggestive evidence for the potential importance of 1 variant is briefly discussed, but the lack of statistical significance calls for larger cohort sizes. Because the population of childhood cancer survivors is increasing, large-scale and systematic research is needed to identify genetic variants that could aid predictive risk models of gonadotoxicity as well as fertility preservation options for childhood cancer survivors

    Quality of integrated female oncofertility care is suboptimal: A patient-reported measurement

    No full text
    Background: Clinical practice guidelines recommend to inform female cancer patients about their infertility risks due to cancer treatment. Unfortunately, it seems that guideline adherence is suboptimal. In order to improve quality of integrated female oncofertility care, a systematic assessment of current practice is necessary. Methods: A multicenter cross-sectional survey study in which a set of systematically developed quality indicators was processed, was conducted among female cancer patients (diagnosed in 2016/2017). These indicators represented all domains in oncofertility care; risk communication, referral, counseling, and decision-making. Indicator scores were calculated, and determinants were assessed by multilevel multivariate analyses. Results: One hundred twenty-one out of 344 female cancer patients participated. Eight out of 11 indicators scored below 90% adherence. Of all patients, 72.7% was informed about their infertility, 51.2% was offered a referral, with 18.8% all aspects were discussed in counseling, and 35.5% received written and/or digital information. Patient's age, strength of wish to conceive, time before cancer treatment, and type of healthcare provider significantly influenced the scores of three indicators. Conclusions: Current quality of female oncofertility care is far from optimal. Therefore, improvement is needed. To achieve this, improvement strategies that are tailored to the identified determinants and to guideline-specific barriers should be developed
    corecore